(41.4 mg) Pd2(dba)3(CHCl3), 0.08 mmol Xantphos (46 mg),
and 6 h heating under reflux.
7 Some simple benzylphosphonate derivatives can be prepared under
milder reaction conditions using modified versions of this reaction,
for example, photo-Arbuzov rearrangement (S. Ganapathy,
B. B. V. S. Sekhar, S. M. Cairns, K. Akutagawa and
W. G. Bentrude, J. Am. Chem. Soc., 1999, 121, 2085–2096), Lewis
acid catalyzed reactions (P. Y. Renard, P. Vayron, E. Leclerc,
A. Valleix and C. Mioskowski, Angew. Chem., Int. Ed., 2003, 42,
2389–2392), or silicon-mediated Michaelis–Arbuzov rearrange-
ment (P. Y. Renard, P. Vayron and C. Mioskowski, Org. Lett.,
2003, 5, 1661–1664).
8 D. Witt and J. Rachon, Phosphorus, Sulfur Silicon Relat. Elem.,
1994, 91, 153–164; A. Kers, J. Stawinski, L. Dembkowski and
A. Kraszewski, Tetrahedron, 1997, 53, 12691–12698; R. J. Cohen,
D. L. Fox, J. F. Eubank and R. N. Salvatore, Tetrahedron Lett.,
2003, 44, 8617–8621; J. J. Heynekamp, W. M. Weber,
L. A. Hunsaker, A. M. Gonzales, R. A. Orlando, L. M. Deck
and D. L. Vander Jagt, J. Med. Chem., 2006, 49, 7182–7189;
L. M. Klingensmith, E. R. Strieter, T. E. Barder and
S. L. Buchwald, Organometallics, 2006, 25, 82–91.
General procedure for the synthesis of dinucleoside benzylphos-
phonates 14–17. Pd2(dba)3(CHCl3) (0.0125 mmol, 13 mg),
Xantphos (0.025 mmol, 15 mg), a suitable protected dinucleo-
side H-phosphonate (0.5 mmol) and THF (5 mL) were placed
in a two-neck flask equipped with a reflux condenser. The
apparatus was filled with nitrogen by applying two cycles of
vacuum/N2, and N,N-diisopropylethylamine (0.6 mmol,
78 mg, 105 mL) and benzyl chloride (0.6 mmol, 76 mg,
69 mL) were added. The mixture was refluxed for 4 h,
concentrated under vacuum and purified by silica gel chromato-
graphy using pentane–EtOAc (1 : 1, v/v) with a gradient of
MeOH (2.5–10%).
9 S. Amberg and J. W. Engels, Helv. Chim. Acta, 2002, 85, 2503–2517.
10 T. Johansson and J. Stawinski, Chem. Commun., 2001, 2564–2565.
11 G. Laven and J. Stawinski, Coll. Symposium Series, 2005, 7, 195–199.
´
12 S. Abbas and C. J. Hayes, Synlett, 1999, 1124–1126.
13 D. Prim, J.-M. Campagne, D. Joseph and B. Andrioletti,
Tetrahedron, 2002, 58, 2041–2075.
14 K. Bravo-Altamirano, Z. H. Huang and J. L. Montchamp, Tetra-
hedron, 2005, 61, 6315–6329; L. Coudray and J. L. Montchamp,
Eur. J. Org. Chem., 2008, 4101–4103.
Diethyl benzylphosphonothioate (18). The reaction was
carried out starting from benzyl bromide and diethyl
H-phosphonothioate similarly to the procedure described for
compounds 1–9 and 11–13, except for 2 h heating under reflux.
The product was purified by silica gel chromatography using
pentane–EtOAc (20 : 1, v/v).
50-O-(tert-Butyldiphenylsilyl)thymidin-30-yl ethyl benzyl-
phosphonothioate—mixture of diastereoisomers (19). The
reaction was carried out starting from benzyl bromide and
50-O-(tert-butyldiphenylsilyl)thymidin-30-yl ethyl H-phosphono-
thioate, similarly to the method described for compounds
14–17, except for 3 h heating under reflux. The product was
purified by silica gel chromatography, using a linear gradient
of MeOH (0–10%) in CH2Cl2.
15 G. Laven and J. Stawinski, Synlett, 2009, 225–228.
´
16 C. Amatore, A. Jutand and A. Thuilliez, Organometallics, 2001, 20,
3241–3249.
17 In separate experiments we attempted to react benzyl chloride
with diethyl H-phosphonate in the presence 1.3 equiv. of
N,N-diisopropylethylamine, and benzyl chloride with triethyl
phosphite in the presence of Pd/Xantphos (3%) (THF, under
reflux, overnight). No detectable amounts of diethyl benzyl-
phosphonate formation could be observed under these reaction
conditions.
18 E. S. Petrov, M. I. Terekhova, I. G. Malakhova, E. N. Tsvetkov,
A. I. Shatenshtein and M. I. Kabachnik, Zh. Obsh. Khim., 1979,
49, 2410–2414; A. G. Matveeva, M. I. Terekhova, I. M. Aladzheva,
I. L. Odinets, E. S. Petrov, T. A. Mastryukova and
M. I. Kabachnik, Zh. Obsh. Khim., 1993, 63, 607–610; R. Wallin,
M. Kalek, A. Bartoszewicz, M. Thelin and J. Stawinski,
Phosphorus, Sulfur Silicon Relat. Elem., 2009, 184, 908–916.
19 D. Milstein and J. K. Stille, J. Am. Chem. Soc., 1979, 101,
4992–4998; A. Gillie and J. K. Stille, J. Am. Chem. Soc., 1980,
102, 4933–4941.
Acknowledgements
Financial support from the Swedish Natural Science Research
Council is gratefully acknowledged.
References
20 J. K. Stille and K. S. Y. Lau, Acc. Chem. Res., 1977, 10, 434–442;
C. Amatore and A. Jutand, J. Organomet. Chem., 1999, 576,
254–278.
21 R. A. Stockland, A. M. Levine, M. T. Giovine, I. A. Guzei and
J. C. Cannistra, Organometallics, 2004, 23, 647–656.
22 P. Fitton, J. E. McKeon and B. C. Ream, J. Chem. Soc. D, Chem.
Commun., 1969, 370–371.
1 R. Engel, Chem. Rev., 1977, 77, 349–367; R. Engel, The use of
carbon–phosphorus analogue compounds in the regulation
of biological processes, in Handbook of Organophosphorus
Chemistry, ed. R. Engel, Marcel DekkerNew York, 1992,
pp. 559–600.
2 K. Yoshino, T. Kohno, T. Uno, T. Morita and G. Tsukamoto,
J. Med. Chem., 1986, 29, 820–825; K. Goto, S. Nakamura,
Y. Morioka, M. Kondo, S. Naito and K. Tsutsumi, Chem. Pharm.
Bull., 1996, 44, 547–551.
23 B. Liegault, J.-L. Renaud and C. Bruneau, Chem. Soc. Rev., 2008,
´
37, 290–299.
24 R. Kuwano, Synthesis, 2009, 1049–1061.
25 A. M. Johns, J. W. Tye and J. F. Hartwig, J. Am. Chem. Soc.,
2006, 128, 16010–16011.
26 G. Consiglio and R. M. Waymouth, Chem. Rev., 1989, 89,
257–276; C. G. Frost, J. Howarth and J. M. J. Williams,
Tetrahedron: Asymmetry, 1992, 3, 1089–1122; Y. Tamaru, Eur. J.
Org. Chem., 2005, 2647–2656.
27 J.-Y. Legros, M. Toffano and J.-C. Fiaud, Tetrahedron, 1995, 51,
3235–3246; R. Kuwano and Y. Kondo, Org. Lett., 2004, 6,
3545–3547.
28 A. M. Johns, M. Utsunomiya, C. D. Incarvito and J. F. Hartwig,
J. Am. Chem. Soc., 2006, 128, 1828–1839.
29 J. Stawinski, Some Aspects of H-Phosphonate Chemistry, in
Handbook of Organophosphorus Chemistry, ed. R. Engel, Marcel
Dekker, New York, 1992, pp. 377–434.
30 M. Kalek and J. Stawinski, Organometallics, 2008, 27, 5876–5888.
31 M. Kalek and J. Stawinski, Organometallics, 2007, 26, 5840–5847.
32 C. Amatore and A. Jutand, Acc. Chem. Res., 2000, 33, 314–321.
3 J. P. Krise and V. J. Stella, Adv. Drug Delivery Rev., 1996, 19,
287–310; Q. Dang, Y. Liu, R. M. Rydzewski, B. S. Brown,
E. Robinson, P. D. van Poelje, T. J. Colby and M. D. Erion,
Bioorg. Med. Chem. Lett., 2007, 17, 3412–3416.
4 M. Alt, S. Eisenhardt, M. Serwe, R. Renz, J. W. Engels and
W. H. Caselmann, Eur. J. Clin. Invest., 1999, 29, 868–76;
T. J. Lehmann and J. W. Engels, Bioorg. Med. Chem., 2001, 9,
1827–1835.
5 A. Michaelis and R. Kaehne, Chem. Ber., 1898, 31, 1048–1055;
A. K. Bhattacharya and G. Thyagarajan, Chem. Rev., 1981, 81,
415–430; Methoden der organischen Chemie (Houben-Weyl),
ed. E. Muller, George Thieme Verlag, Stuttgart, 1964, vol. XII/1,
¨
p. 433.
6 A. Michaelis and T. Becker, Chem. Ber., 1897, 30, 1003–1009;
Methoden der organischen Chemie (Houben-Weyl), ed. E. Muller,
¨
George Thieme Verlag, Stuttgart, 1964, vol. XII/1, p. 446;
R. Waschbusch, J. Carran, A. Marinetti and P. Savignac,
¨
Synthesis, 1997, 727–743.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
974 | New J. Chem., 2010, 34, 967–975