3064
W.-J. Huang et al. / Tetrahedron Letters 51 (2010) 3062–3064
5. Chen, I. S.; Chen, J. J.; Duh, C. Y.; Tsai, I. L.; Chang, C. T. Planta Med. 1997, 63,
To explore the versatility of this reaction for natural products
154–157.
with an enamine moiety, two dehydroaporphines (3a and 3b) to-
gether with 7,8-dihydroberberine (5) were treated in the similar
manner as described in Scheme 1. Compound 3a was synthesized
from boldine via three reaction steps: reaction with 5-chloro-1-
phenyltetrazole,26 hydrogenolysis,26 and dehydrogenation.21 Com-
pound 3b was prepared from boldine via acetylation followed by
dehydrogenation.21 The reaction of 3a and 3b with benzyl bromide
under general microwave irradiation gave 4a and 4b in 77% and
71% yields, respectively. Similarly, the reaction of 7,8-dihydroberb-
erine (5), prepared from sodium borohydride reduction of berber-
ine,27 gave 13-benzyl-7,8-dihydroberberine (6) in an 82% yield. In
conclusion, this study provides a highly efficient method to pre-
pare substituted enamine, in particular dehydroaporphine and
7,8-dihydroberberine, relative to the conventional method. This
method not only accelerates the enamine-type addition, using
microwave irradiation as a heating source, but also improves yields
by the addition of sodium iodide.
6. Girán, L.; Berényi, S.; Sipos, A. Tetrahedron 2008, 64, 10388–10394.
7. Si, Y. G.; Gardner, M. P.; Tarazi, F. I.; Baldessarini, R. J.; Neumeyer, J. L. Bioorg.
Med. Chem. Lett. 2008, 18, 3971–3973.
8. Asencio, M.; Hurtado-Guzmán, C.; López, J. J.; Cassels, B. K.; Protaisc, P.;
Chagraoui, A. Bioorg. Med. Chem. 2005, 13, 3699–3704.
9. Tóth, M.; Berényi, S.; Csutorás, C.; Kula, N. S.; Zhang, K.; Baldessarini, R. J.;
Neumeyer, J. L. Bioorg. Med. Chem. 2006, 14, 1918–1923.
10. Sipos, A.; Kiss, B.; Schmidt, E.; Greiner, I.; Berényi, S. Bioorg. Med. Chem. 2008,
16, 3773–3779.
11. Hedberg, M. H.; Johansson, A. M.; Nordvall, G.; Yliniemela, A.; Li, H. B.; Martin,
A. R.; Hjorth, S.; Unelius, L.; Sundell, S.; Hacksell, U. J. Med. Chem. 1995, 38, 647–
658.
12. Si, Y. G.; Gardner, M. P.; Tarazi, F. I.; Baldessarini, R. J.; Neumeyer, J. L. J. Med.
Chem. 2008, 51, 983–987.
13. Ibid. Bioorg. Med. Chem. Lett. 2007, 17, 4128–4130.
14. Chi, T. C.; Lee, S. S.; Su, M. J. Planta Med. 2006, 72, 1175–1179.
15. Menachery, M. D.; Saá, J. M.; Cava, M. P. J. Org. Chem. 1981, 46, 2584–2586.
16. Saá, J. M.; Cava, M. P. J. Org. Chem. 1977, 42, 347–348.
17. Saá, J. M.; Cava, M. P. J. Org. Chem. 1978, 43, 1096–1099.
18. Adam, D. Nature 2003, 421, 571–572.
19. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284.
20. Huang, W. J.; Chen, C. H.; Singh, O. V.; Lee, S. L.; Lee, S. S. Synth. Commun. 2002,
32, 3681–3686.
21. Schaus, J. M.; Titus, R. D.; Foreman, M. M.; Mason, N. R.; Truex, L. L. J. Med.
Chem. 1990, 33, 600–607.
Acknowledgment
22. Philipov, S.; Petrov, O.; Mollov, N. Arch. Pharm. 1981, 314, 1034–1040.
23. Evans, D. A.; Mitch, C. H.; Thomas, R. C.; Zimmerman, D. M.; Robey, R. L. J. Am.
Chem. Soc. 1980, 102, 5955–5956.
We gratefully acknowledge the National Science Council, Tai-
wan, R. O. C., for the support of this work under Grants NSC97-
2323-B-002-015 and NSC97-2320-B-038-010-MY3.
24. The microwave reactor Discovery Benchmate (CEM) was used for microwave
irradiation as a sealed vessel technique. The temperature of reaction mixture
was measured and controlled to a constant level using an infrared temperature
detector. The general condition for the synthesis of 7-substituted
dehydroglaucines (2a–j, 3a–b, 5) is described as follows. The mixture of
dehydroglaucine (100 mg, 0.28 mmol) of MeCN (2 mL) was added to NaI
(166 mg, 1.12 mmol) and substituted alkyl halide (1.40 mmol), and the
resulting suspension was heated to 80 °C under microwave irradiation for
20 min. The reaction mixture was condensed under reduced pressure. The
residue was suspended in CH2Cl2 (50 mL), and partitioned against distillated
H2O (25 mL Â 2) and brine (25 mL). The organic layer was dried over
anhydrous Na2SO4 and condensed under reduced pressure. The residue was
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Stévigny, C.; Bailly, C.; Quetin-Leclercq, J. Curr. Med. Chem. Anti Cancer Agents
2005, 5, 173–182.
2. Zhang, A.; Zhang, Y.; Branfman, A. R.; Baldessarini, R. J.; Neumeyer, J. L. J. Med.
Chem. 2007, 50, 171–181.
chromatographed
over
semi-preparative
high-performance
liquid
chromatography (HPLC) (C18), delivered with MeOH–H2O (9:1), to give the
desired products. The physical data of compounds 2a–j, 4a–c, and 6 are
provided in the Supplementary data.
3. Kuo, R. Y.; Chang, F. R.; Chen, C. Y.; Teng, C. M.; Yen, H. F.; Wu, Y. C.
Phytochemistry 2001, 57, 421–425.
4. Turmukhambetov, A. Z.; Mukusheva, G. K.; Seidakhmetova, R. B.; Shults, E. E.;
Shakirov, M. M.; Bagryanskaya, I. Y.; Gatilov, Y. V.; Adekenov, S. M. Pharm. Chem
J. 2009, 43, 255–257.
25. Kerr, K. M.; Davis, P. J. J. Org. Chem. 1983, 48, 928–932.
26. Ram, V. J.; Neumeyer, J. L. J. Org. Chem. 1982, 47, 4372–4374.
27. Ishii, H.; Takeda, S.; Ogata, K.; Hanaoka, M.; Harayama, T. Chem. Pharm. Bull.
1991, 39, 2712–2714.