C O M M U N I C A T I O N S
Scheme 2. Synthesis of Boryl(phosphino)carbene 5
Scheme 3. Synthesis of Phosphaalkene 6
(-40 °C) saturated pentane solution (52% yield) and fully characterized
by NMR spectroscopy and X-ray crystallography (Figure 1).
The 31P NMR spectrum of 5 shows a signal at high field (-36.7
ppm) that is typical for phosphinocarbenes.2b The 13C NMR chemical
shift for the carbene center appears as a well-resolved doublet at
through a 1,2-migration of the mesityl group from the phosphorus
to the central carbon atom (Scheme 3).
More than 20 years after the isolation of the first stable carbene,
the existence of a stable boryl(phosphino)carbene has been clearly
demonstrated. An original synthetic pathway starting from boryl-
substituted methylenephosphonium derivatives has been developed
and should provide a promising alternative to the classical phos-
phinodiazomethane precursors. Developments of new models
allowing a more complete understanding of this new family of
carbenes are under active investigation.
1
relatively low field (174.6 ppm, JPC ) 208.9 Hz), and the large
coupling constant is indicative of direct P-C connectivity. The X-ray
structures of 4 and 5 were determined at -80 °C (Figure 1 and Table
1). The phosphorus and boron atoms are both in planar environments,
and these planes are almost perpendicular for 5 (N2-P-B-N1 )
103.1°) and coplanar for 4 (N1-B-C1-P ) 172.6° and N2-P-C1-B
) 163.2°). In carbene 5, the P-C1 distance [1.563(13) Å] is shorter
than that in 4 [1.634(3) Å], and the value is consistent with those
reported in the previous phosphinocarbenes (1.53-1.56 Å).6a,c,d The
B-C1 bond undergoes a small shortening in going from 4 [1.568(4)
Å] to 5 [1.54(2) Å] but remains long for a BdC double bond.11 This
corrresponds to a slightly elongated N1-B bond in 5 [1.43(3) Å vs
1.406(3) Å in 4], indicative of a competition between the carbene and
nitrogen lone pairs to fill the vacant boron orbital. The large value of
the P-C1-B angle, which is wider in 5 [151.6(13)°] than in 4
[128.6(2)°], is reminiscent of that in phosphino(silyl)carbenes.12
Acknowledgment. This work was supported by the CNRS
(LEA 368), the Spanish Ministerio de Ciencia e Innovacio´n
(CTQ2007-61704/BQU), and Generalitat de Catalunya (2009SGR-
733 and XRQTC). Time allocated in the Centre de Supercomputacio´
de Catalunya (CESCA) is gratefully acknowledged.
Supporting Information Available: Experimental procedures,
selected NMR data, X-ray crystallographic files for 4 and 5 (CIF), and
computational details and Cartesian coordinates for the calculated
structures. This material is available free of charge via the Internet at
Table 1. Selected Geometrical Parameters for Experimental and
Optimized Structures of 4 and 5 (Distances in Å, Angles in deg)
References
(1) (a) Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem.
Soc. 1988, 110, 6463. (b) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am.
Chem. Soc. 1991, 113, 361. (c) Bourissou, D.; Guerret, O.; Gabbai, F. P.;
Bertrand, G. Chem. ReV. 2000, 100, 39.
5
5calcd
4
4calcd
P-C1
1.563(13)
1.54(2)
151.6(13)
1.569
1.498
160.2
1.634(3)
1.568(4)
128.6(2)
1.634
1.593
124.4
B-C1
(2) (a) Canac, Y.; Soleilhavoup, M.; Conejero, S.; Bertrand, G. J. Organomet.
Chem. 2004, 689, 3857. (b) Vignolle, J.; Cattoe¨n, X.; Bourissou, D. Chem.
ReV. 2009, 109, 3333. (c) Kato, T.; Maerten, E.; Baceiredo, A. Top.
Organomet. Chem. 2010, 30, 131.
P-C1-B
(3) (a) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G.
Science 2006, 312, 722. (b) Schoeller, W. W.; Frey, G. D.; Bertrand, G.
Chem.sEur. J. 2008, 14, 4711.
The geometries of phosphino(boryl)carbene 5 and methylenephos-
phonium 4 were optimized at the M05-2X/6-31G(d) level (see the
Supporting Information). Except for the too-large P-C1-B angle
computed for 5, as in the case of other P-C-Si carbene analogues,13
the other geometrical parameters were reproduced accurately, and the
optimized geometries of 4 and 5 are in good agreement with the
experimental structures (see Table 1). The bonding nature can be
rationalized using natural bond order (NBO) analysis. For carbene 5,
the analysis shows a Pt C triple bond, with the π orbital in the
P-C1-B plane (π′) strongly polarized to C1 (88% C vs 12% P). As
expected, the perpendicular 2p atomic orbital at boron [LP*(B)] in 4
and 5 has a relatively large occupancy resulting from π donation of
the nitrogen lone pair (0.429e in 5 and 0.396e in 4), with a slight
increase upon deprotonation despite the more-localized lone pair at
the N1 atom (1.706e in 5 vs 1.623e in 4). Indeed, the analysis of the
donor-acceptor interactions in the NBO basis estimated from second-
order perturbation theory shows that in the case of carbene 5, the
donations LP(N1) and π′(C1-P) to LP*(B) are of comparable
magnitude. This feature is illustrated in 5 by a rotation of the boron
plane that favors the interaction between the carbene lone pair
[π′(C1-P)] and the vacant LP*(B) orbital at boron. Finally, the
variations of the Wiberg bond indices around the carbenic center in
going from 4 to 5 (P-C1, +0.33; C1-B, +0.25) confirm that 5 can
be classified as a push-pull carbene. As expected for this type of
carbene, the singlet-triplet energy gap was predicted to be relatively
small (17.7 kcal/mol).2b
(4) N-Heterocyclic Carbenes in Transition Metal Catalysis; Glorius, F., Ed.; Topics
in Organometallic Chemistry, Vol. 21; Springer: Berlin, 2007.
(5) Martin, D.; Baceiredo, A.; Gornitzka, H.; Schoeller, W. W.; Bertrand, G.
Angew. Chem., Int. Ed. 2005, 44, 1700.
(6) (a) Soleilhavoup, M.; Baceiredo, A.; Treutler, O.; Ahlrichs, R.; Nieger,
M.; Bertrand, G. J. Am. Chem. Soc. 1992, 114, 10959. (b) Treutler, O.;
Ahlrichs, R.; Soleilhavoup, M. J. Am. Chem. Soc. 1993, 115, 8788. (c)
Buron, C.; Gornitzka, H.; Romanenko, V.; Bertrand, G. Science 2000, 288,
834. (d) Despagnet, E.; Gornitzka, H.; Rozhenko, A. B.; Schoeller, W. W.;
Bourissou, D.; Bertrand, G. Angew. Chem., Int. Ed. 2002, 41, 2835. (e)
Despagnet-Ayoub, E.; Gornitzka, H.; Bourissou, D.; Bertrand, G. Eur. J.
Org. Chem. 2003, 2039.
(7) (a) Pelter, A.; Singaram, B.; Wilson, J. W. Tetrahedron Lett. 1983, 24,
631. (b) Cooke, M. P. J. Org. Chem. 1994, 59, 2930. (c) Pelter, A. Pure
Appl. Chem. 1994, 66, 223.
(8) Only a few boryldiazomethane derivatives have been described. See: (a)
Arthur, M. P.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc. 1991, 113,
5857. (b) Weber, L.; Wartig, H. B.; Stammler, H.-G.; Neumann, B.
Organometallics 2001, 20, 5248.
(9) (a) Igau, A.; Baceiredo, A.; Gru¨tzmacher, H.; Pritzkow, H.; Bertrand, G.
J. Am. Chem. Soc. 1989, 111, 6853. (b) Gru¨tzmacher, H.; Pritzkow, H.
Angew. Chem., Int. Ed. 1991, 30, 709. (c) Heim, U.; Pritzkow, H.;
Scho¨nberg, H.; Gru¨tzmacher, H. Chem. Commun. 1993, 673.
(10) Species 3 and4 can be regarded as electron-deficient R-boryl carbocations.
Calculations at the M05-2X/6-31G(d) level revealed that isomer 4 is 29.9
kcal/mol more stable than isomer 3, suggesting increased stabilization due
to π donation from LP(N1) to LP*(B) in 4.
(11) (a) Horchler von Locquenghien, K.; Baceiredo, A.; Boese, R.; Bertrand,
G. J. Am. Chem. Soc. 1991, 113, 5062. (b) Chiu, C.-W.; Gabba¨ı, F. P.
Angew. Chem., Int. Ed. 2007, 46, 6878.
(12) Kato, T.; Gornitzka, H.; Baceiredo, A.; Savin, A.; Bertrand, G. J. Am. Chem.
Soc. 2000, 122, 998.
(13) (a) Martin, D.; Illa, O.; Baceiredo, A.; Bertrand, G.; Ortuno, R. M.;
Branchadell, V. J. Org. Chem. 2005, 70, 5671. (b) Lecea, B.; Ayerbe, M.;
Arrieta, A.; Coss´ıo, F. P.; Branchadell, V.; Ortun˜o, R. M.; Baceiredo, A.
J. Org. Chem. 2007, 72, 357.
Carbene 5 is perfectly stable in the solid state and slowly
rearranges in solution into the corresponding phosphaalkene 6
JA103422B
9
J. AM. CHEM. SOC. VOL. 132, NO. 26, 2010 8865