Inorg. Chem. 2010, 49, 6811–6813 6811
DOI: 10.1021/ic100947q
Intramolecular σ-Bond Metathesis/Protonolysis on Zirconium(IV) and Hafnium(IV)
Pyridylamido Olefin Polymerization Catalyst Precursors: Exploring Unexpected
Reactivity Paths
†
,†
†
†
‡
ꢀ
´
Lapo Luconi, Giuliano Giambastiani,* Andrea Rossin, Claudio Bianchini, and Agustı Lledos
†Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR, Via Madonna del Piano 10,
‡
´
ꢁ
50019 Sesto F.no, Florence, Italy, and Departamento de Quımica, Universitat Autonoma de Barcelona,
08193 Bellaterra, Barcelona, Spain
Received May 12, 2010
A temperature-controlled metathesis/protonolysis takes place on
group 4 amidopyridinate polymerization catalyst precursors. Un-
raveling this unprecedented reactivity path allowed us to highlight
the importance of the metal precursor choice while preparing
improved catalytic structures or studying new catalytic processes.
Hf-CAr bond.4 In addition to classical transamination reac-
tions, early amido group 4 metal complexes can undergo
intramolecular σ-bond metathesis, providing unconventional
cyclometalated frameworks.1,2,4 In particular, one or more
NHMe2 groups are generated that can remain in the metal
coordination sphere5 or be definitively removed.
Herein we describe the first examples of zirconium(IV) and
hafnium(IV) amidopyridinate tautomers that reversibly inter-
convert via a temperature-controlled CAr-H/Zr-NMe2
σ-bond metathesis/Me2N-H/Zr-CAr protonolysis. We feel
that the results presented in this Communication are of broad
interest because they contribute to a better understanding of
the organometallic chemistry of MIV(NMe2)4-based com-
plexes, especially toward a rational design of metal catalysts
for polymerization reactions.
As part of our continuing interest in developing early-
transition-metal-based systems for efficient and selective
olefin upgrade,6 we have studied the reactivity of ZrIV(NMe2)4
and HfIV(NMe2)4 with a series of aminopyridinate ligands bear-
ing different aryl or heteroaryl substituents on the pyridine 6
position. We have observed that the reaction of 1with Zr(NMe2)4
proceeds smoothly in benzene at room temperature with com-
plete substrate conversion within 3 h and the loss of 1 equiv of
dimethylamine. Solvent evaporation provides a pale-yellow solid
highly soluble in aromatic and aliphatic hydrocarbons, whose
1D and 2D NMR spectroscopy (toluene-d8, 298 K) reveals the
coexistence of two distinct isomeric forms (tautomers 2 and 3) in
an about 70:30 ratio, with the minority being unambiguously
attributed to the hexacoordinated cyclometalated N2ThZr-
(NMe2)2(η1-HNMe2) species (3; Scheme 1) with a dimethyl-
amine ligand as part of the metal coordination sphere.
In conjunction with a variety of nitrogen ligands, hafnium(IV)
and zirconium(IV) tetrakis(dimethylamidates), M(NMe2)4,
are largely used as precursors to organometallic species and,
in particular, to generate olefin polymerization catalysts via
transamination reactions. Within the latter field, cyclometa-
lated hafnium(IV) complexes, stabilized by dianionic amido-
pyridinate ligands, have recently attracted much interest in
view of their outstanding catalytic performance,1-3 as well as
the wealth of their activation chemistry centered on the unusual
*To whom correspondence should be addressed. E-mail: giuliano.
(1) (a) Boussie, R. T.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe,
A. M.; Leclerc, M. K.; Murphy, V.; Shoemaker, J. A. W.; Turner, H.; Rosen,
R. K.; tevens, J. C.; Alfano, F.; Busico, V.; Cipullo, R.; Talarico, G. Angew.
Chem., Int. Ed. 2006, 45, 3278–3283. (b) Domski, G. J.; Lobkovsky, E. B.;
Coates, G. W. Macromolecules 2007, 40, 3510–3513. (c) Busico, V.; Cipullo, R.;
Pellecchia, R.; Rongo, L.; Talarico, G.; Macchioni, A.; Zuccaccia, C.; Froese,
R. D. J.; Hustad, P. D. Macromolecules 2009, 42, 4369–4373. (d) Boussie, T. R.;
Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M. K.; Lund, C.;
Murphy, V. (Symyx Technologies, Inc.). U.S. Patent Appl. 2006/0135722 A1.
(2) Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.;
Wenzel, T. T. Science 2006, 312, 714–719.
€
(3) (a) Nienkemper, K.; Kehr, G.; Kehr, S.; Frohlich, R.; Erker, G.
J. Organomet. Chem. 2008, 693, 1572–1589. (b) Noor, A.; Kretschmer, W. P.;
Glatz, G.; Meetsma, A.; Kempe, R. Eur. J. Inorg. Chem. 2008, 5088–5098.
(4) (a) Froese, R. D. J.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T.
J. Am. Chem. Soc. 2007, 129, 7831–7840. (b) Zuccaccia, C.; Macchioni, A.;
Busico, V.; Cipullo, R.; Talarico, G.; Alfano, F.; Boone, H. W.; Frazier, K. A.;
Hustad, P. D.; Stevens, J. C.; Vosejpka, P. C.; Abboud, K. A. J. Am. Chem. Soc.
2008, 130, 10354–10368. (c) Zuccaccia, C.; Busico, V.; Cipullo, R.; Talarico, G.;
Froese, R. D. J.; Vosejpka, P. C.; Hustad, P. D.; Macchioni, A. Organometallics
2009, 28, 5445–5458. (d) Frazier, K. A.; Boone, H. W.; Vosejpka, P. C.; Stevens,
J. C. (Dow Global Techologies Inc.). U.S. Patent Appl. 2004/0220050 A1.
(e) Domski, G. J.; Edson, J. B.; Keresztes, I.; Lobkovsky, E. B.; Coates, G. W.
Chem. Commun. 2008, 6137–6139. (f) Hagadorn, J. R. (Exxonmobil Chemical
Patents Inc.). Patent WO 2009/114209 A1.
(5) (a) Li, Y.; Turnas, A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem.
2002, 41, 6298–6306. (b) Riley, P. N.; Fanwick, P. E.; Rothwell, I. P. J. Chem.
Soc., Dalton Trans. 2001, 181–186. (c) Fuhrmann, H.; Brenner, S.; Arndt, P.;
Kempe, R. Inorg. Chem. 1996, 35, 6742–6745. (d) Black, D. G.; Swenson, D. C.;
Jordan, R. F. Organometallics 1995, 14, 3539–3550.
(6) (a) Lyubov, D. M.; Fukin, G. K.; Cherkasov, A. V.; Shavyrin, A. S.;
Trifonov, A. A.; Luconi, L.; Bianchini, C.; Meli, A.; Giambastiani, G.
Organometallics 2009, 28, 1227–1232. (b) Luconi, L.; Lyubov, D. M.; Bianchini,
C.; Rossin, A.; Faggi, C.; Fukin, G. K.; Cherkasov, A. V.; Shavyrin, A. S.;
Trifonov, A. A.; Giambastiani, G. Eur. J. Inorg. Chem. 2010, 608–620.
r
2010 American Chemical Society
Published on Web 06/28/2010
pubs.acs.org/IC