´
Lopez-Rayo et al.
7914 J. Agric. Food Chem., Vol. 58, No. 13, 2010
in its structure) and a fast action to relieve iron chlorosis due to its
open nature similar to that of o,p-EDDHA/Fe3þ. Efforts are
underway in our laboratories to determine the agronomical
efficiency and mode of action of this new iron chelate.
Fe(o,o-EDDHA) and Fe(o,p-EDDHA) isomers in supplying Fe to
strategy I plants differs in nutrient solution and calcareous soil.
J. Agric. Food Chem. 2008, 56, 10774–10778.
(14) Schenkeveld, W. D. C.; Dijcker, R.; Reichwein, A. M.; Temminghoff,
E. J. M.; van Riemsdijk, W. H. The effectiveness of soil-applied
FeEDDHA treatments in preventing iron chlorosis in soybean
as a function of the o,o-FeEDDHA content. Plant Soil 2008, 303,
161–176.
(15) ASTM. Standard specification for reagent water. Annual Book of
ASTM Standards; Philadelphia, PA, 1995; 11.01.
(16) Martell, A. E.; Motekaitis, R. J. Determination and Use of Stability
ABBREVIATIONS USED
DCHA, 2-(2-((2-hydroxybenzyl)amino)ethylamino)-2-(2-
hydroxyphenyl)acetic acid; o,o-EDDHA, ethylenediaminedi(2-
hydroxyphenylacetic) acid; o,p-EDDHA, ethylenediamine-N-(o-
hydroxyphenylacetic acid)-N0-(p-hydroxyphenylacetic acid);
p,p-EDDHA, ethylenediamine-N-(p-hydroxyphenylacetic acid)-
N0-(p-hydroxyphenylacetic acid); EDTA, ethylenediaminetetraa-
cetic acid; MES, 2-(N-morpholino)ethanesulfonic acid; NMR,
nuclear magnetic resonance; AAS, atomic absorption spectros-
copy; IR, infrared spectroscopy; HRMS, high-resolution mass
spectrometry; ESI-MS, electrospray ionization mass spectrometry.
Constants; VCH Publishers: New York, 1992; 200 pp.
(17) Gans, P.; Savatini, A.; Vacca, A. Investigation of equilibria in
solution. Determination of equilibrium constants with the Hyper-
quad suite of programs. Talanta 1996, 43, 1739–1753.
(18) L’Eplattenier, F.; Murase, I.; Martell, A. New multidentate ligands,
VI: chelating tendencies of N, N0-di(2-hydroxybenzyl)ethylenedi-
amine-N,N0-diacetic acid. J. Am. Chem. Soc. 1967, 89, 837–843.
(19) Gustafsson, J. P. Visual MINTEQ Version 6.0 Kungl Tekniska
Hogskolan (KTH), Division of Land Water Resources, 2006;
vminteq/.
Note Added after ASAP Publication
There was an error in the Introduction of the version of this
paper published ASAP on June 9, 2010; the correct version pub-
lished on June 11, 2010.
(20) Halvorson, A. D.; Lindsay, W. L. Equilibrium relationships of metal
chelates in hydroponic solutions. Soil Sci. Soc. Am. Proc. 1972, 36,
755–761.
LITERATURE CITED
(21) Pecoraro, V. L.; Bonadies, J. A.; Marrese, C. A.; Carrano, C. J.
Stepwise metal-assisted oxidative decarboxylation of vanadium(V)
ethylenebis((o-hydroxyphenyl)glycine). Isolation of a possible inter-
mediate. J. Am. Chem. Soc. 1984, 106, 3360–3362.
(22) Bonadies, J. A.; Carrano, C. J. Vanadium phenolates as models for
vanadium in biological systems. 1. Synthesis, spectroscopy, and elec-
trochemistry of vanadium complexes of ethylenebis[(o-hydroxy-
phenyl)glycine] and its derivatives. J. Am. Chem. Soc. 1986, 108,
4088–4095.
(23) Riley, P. E.; Pecoraro, V. L.; Carrano, C. J.; Bonadies, J. A.;
Raymond, K. N. X-ray crystallographic characterization of a step-
wise, metal-assisted oxidative decarboxylation: vanadium complexes
of ethylenebis[(o-hydroxyphenyl)glycine] and derivatives. Inorg.
Chem. 1986, 25, 154–160.
(24) Carrano, C. J.; Spartalian, K.; Appa Rao, G. V. N.; Pecoraro, V. L.;
Sundaralingam, M. The iron(III) complex of N-[2-((o-hydroxyphe-
nyl)glycino)ethyl]salicylidenimine. A model complex for the iron(III)
environment in the transferrins. J. Am. Chem. Soc. 1985, 107, 1651–
1658.
(1) Chaney, R. L.; Bell, P. F. Complexity of iron nutrition: lessons for
plant-soil interaction research. J. Plant Nutr. 1987, 10, 963–994.
(2) Chen, Y.; Barak, P. Iron nutrition of plants in calcareous soils. Adv.
Agron. 1982, 35, 217–240.
(3) Mengel, K.; Kirby, E. A.; Kosegarten, H.; Appel, T. Iron. In
Principles of Plant Nutrition; Mengel, K., Kirby, E. A., Eds.; Kluwer
Academic Publisher: Dordrecht, The Netherlands, 2001; pp 553-571.
(4) Nowack, B. Enviromental chemistry of aminocarboxylate chelating
agents. Environ. Sci. Technol. 2002, 36, 4009–4016.
(5) Nowack, B. Chelating agents and the environment. Environ. Pollut.
2008, 153, 1–2.
ꢀ
ꢁ
(6) Cremonini, M. A.; Alvarez-Fernandez, A.; Lucena, J. J.; Rombola,
´
A.; Marangoni, B.; Placucci, G. J. Nuclear magnetic resonance
analysis of iron ligand EDDHA employed in fertilizers. J. Agric.
Food Chem. 2001, 49, 3527–3532.
(7) Herna
´
ndez-Apaolaza, L.; Garcı
´
a-Marco, S.; Nadal, P.; Lucena, J. J.;
rez-Lopez, P.; Escudero, R.
Sierra, M. A.; Go
´
mez-Gallego, M.; Ramı
´
´
Structure and fertilizer properties of byproducts formed in the
(25) Li, X.; Pecoraro, V. L. Stepwise, metal-assisted decarboxylation
promoted by manganese: reactivity relationship between manganese
and vanadium. Inorg. Chem. 1989, 28, 3403–3410.
synthesis of EDDHA. J. Agric. Food Chem. 2006, 54, 4355–4363.
´ ´
(8) Laghi, L.; Alcaniz, S.; Cerdan, M.; Gomez-Gallego, M.; Sierra,
M. A.; Placucci, G.; Cremonini, M. A. Facile deferration of
commercial fertilizers containing iron chelates for their NMR
(26) Yunta, F.; Garcıa-Marco, S.; Lucena, J. J. Theoretical speciation of
´
ethylenediamine-N-(o-hydroxyphenylacetic)-N0-(p-hydroxyphenyl-
acetic) acid (o,p-EDDHA) in agronomic conditions. J. Agric. Food
Chem. 2003, 51, 5391–5399.
analysis. J. Agric. Food Chem. 2009, 57, 5143–5147.
ꢀ
(9) Orera, I.; Orduna, J.; Abadı
´
a, J.; Alvarez-Ferna
´
ndez, A. Electro-
spray ionization collision-induced dissociation mass spectrometry:
a tool to characterize synthetic polyaminocarboxylate ferric chel-
ates used as fertilizers. Rapid Commun. Mass Spectrom. 2010, 24,
109–119.
(27) Smith, R. M.; Martell, A. E. Critical Stability Constants; Plenum
Press: New York, 1984.
(28) Bannochie, C. J.; Martell, A. E. Affinities of racemic and meso forms
of N,N0-ethylenebis[2-(o-hydroxypheny1)glycine for divalent and
trivalent metal ions. J. Am. Chem. Soc. 1989, 111, 4735–4742.
(29) Ahrland, S.; Dahlgren, A.; Persson, I. Stabilities and hydrolysis of
some iron(III) and manganese(III) complexes with chelating ligands.
Acta Agric. Scand. 1990, 40, 101.
(10) Garcıa-Marco, S.; Martınez, N.; Yunta, F.; Hernandez-Apaolaza,
´ ´ ´
L.; Lucena, J. J. Effectiveness of ethylenediamine-N-(o-hydro-
xyphenylacetic)-N0-(p-hydroxyphenylacetic) acid (o,p-EDDHA) to
supply iron to plants. Plant Soil 2006, 279, 31–40.
(11) Yunta, F.; Garcıa-Marco, S.; Lucena, J. J. Chelating agents related
´
(30) Lindsay, W. L. Chemical Equilibrium in Soils; Wiley: New York, 1979.
´ ´
(31) Arias, M.; Lopez, E.; Fernandez, D.; Soto, B. Copper distribution
to ethylenediamine bis(2-hydroxyphenyl)acetic acid (EDDHA):
synthesis, characterization, and equilibrium studies of the free-
ligands and their Mg2þ, Ca2þ, Cu2þ, and Fe3þ chelates. Inorg. Chem.
2003, 42, 5412–5421.
and dynamics in acid vineyard soils treated with copper-based
fungicides. Soil Sci. 2004, 169, 796–805.
(12) Go
´
mez-Gallego, M.; Sierra, M. A.; Alca
zar, R.; Ramırez, P.; Pinar,
´ ´
Received for review March 15, 2010. Revised manuscript received
May 27, 2010. Accepted May 28, 2010. Financial support by Spanish
MCINN Grants AGL2007-63756 (UAM group), CTQ2007-67730-
C02-01, CAM CCG07-UCM/PPQ-2596, and Consolider-Ingenio
2010 CSD2007-0006 (UCM group) and Tradecorp is acknowledged.
R.E. thanks Tradecorp for financial support.
C.; Mancheno, J.; Garcı
´
a-Marco, S.; Yunta, F.; Lucena, J. J.
Synthesis of o,p-EDDHA and its detection as the main impurity in
o,o-EDDHA commercial iron chelates. J. Agric. Food Chem. 2002,
50, 6395–6399.
(13) Rojas, C. L.; Romera, F. J.; Alca
ntara, E.; Perez-Vicente, R.;
´ ´
Sariego, C.; Garcıa-Alonso, J. I.; Boned, J.; Marti, G. Efficacy of
´