C O M M U N I C A T I O N S
Table 2. Ir-Catalyzed Allylic Substitution of Racemic Aromatic
sponding allylic substitution products with good to excellent
enantioselectivity. The high reactivity of branched allylic benzoates
enables enantioselective allylic substitutions that are slow or poorly
selective with linear allylic electrophiles. Moreover, the high-yield,
one-pot synthesis of the branched allylic esters makes these
reactions practical with 2.2 equiv of this reagent, particularly for
processes in which the nucleophile is a valuable component. Efforts
to extend the current methods to neutral nucleophiles and to
reactions of additional allylic electrophiles are ongoing.
Allylic Benozatesa
yield
(%)b c
entry
R (2)
nucleophile
product
ee (%)d
,
1
2
3
4
Ph (2f)
NaOPh
3f
81
90
86
84
95
87
83
86
92
76
75
93
87
83
96
95
95
98
98
4-MeO-C6H4 (2g) NaOPh
3g
3h
3i
3j
3k
3l
3m
4b
5b
7b
7c
8b
9b
Acknowledgment. We thank the NIH for financial support of
this work (GM55382 and GM58108 to J.F.H. and GM84584 to
L.M.S.), Johnson-Matthey for gifts of IrCl3 and [Ir(COD)Cl]2, and
Dr. Klaus Ditrich and BASF for gifts of chiral amines. M.U. thanks
the JSPS for a fellowship.
4-F3C-C6H4 (2h)
4-Br-C6H4 (2i)
3-Br-C6H4 (2j)
2-F-C6H4 (2k)
2-Me-C6H4 (2l)
3-pyridyl (2m)
Ph (2f)
Ph (2f)
Ph (2f)
2-Me-C6H4 (2l)
Ph (2f)
Ph (2f)
NaOPh
NaOPh
NaOPh
NaOPh
NaOPh
NaOPh
LiN(Boc)2
KNHC(O)CF3
NaTs
5
6
94
7e
8
-84
92
93
92
96
9
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
10f
11
12e
13
14
NaTs
NaCH(CO2Me)2
NaCH(CN)2
-94
98
91
References
a See Supporting Information for experimental details. b Isolated yield
of products 3-9. Branched-to-linear selectivities were >95:5. c The
yields of 10 (based on 2) ranged from 48-52% (entries 1-6, 8-11, and
13-14). The yield of 10 was 5-8% for reactions of 2l (entries 7 and
12). See Table S2 in the Supporting Information. d Enantiomeric excess
of 3-9 determined by chiral HPLC methods. e Nucleophile was added
prior to isomerization. f Allylic substitution was run at 0 °C to rt in the
presence of 4 mol % 1b.
(1) (a) Kiener, C. A.; Shu, C. T.; Incarvito, C.; Hartwig, J. F. J. Am. Chem.
Soc. 2003, 125, 14272. (b) Leitner, A.; Shekar, S.; Pouy, M. J.; Hartwig,
J. F. J. Am. Chem. Soc. 2005, 127, 15506.
(2) For selected examples, see: (a) Alexakis, A.; Polet, D. Org. Lett. 2004, 6,
3529. (b) Lipowsky, G.; Miller, N.; Helmchen, G. Angew. Chem., Int. Ed.
2004, 43, 4595. (c) Graening, T.; Hartwig, J. F. J. Am. Chem. Soc. 2005,
127, 17192. (d) Weix, D. J.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129,
7720. (e) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Org. Lett. 2008, 10,
1815. (f) Polet, D.; Rathgeb, X.; Falciola, C. A.; Langlois, J.-B.; El Hajjaji,
S.; Alexakis, A. Chem.sEur. J. 2009, 15, 1205.
(3) For selected examples, see: (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem.
Soc. 2002, 124, 15164. (b) Shu, C.; Leitner, A.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2004, 43, 4797. (c) Weihofen, R.; Tverskoy, O.; Helmchen,
G. Angew. Chem., Int. Ed. 2006, 45, 5546. (d) Stanley, L. M.; Hartwig,
J. F. J. Am. Chem. Soc. 2009, 131, 8971. (e) Pouy, M. J.; Stanley, L. M.;
Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11312. (f) Stanley, L. M.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2009, 48, 7841. (g) Lopez, F.;
Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 3426. (h) Shu,
C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794. (i) Lyothier, I.;
Defieber, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2006, 45, 6204. (j)
Ueda, M.; Hartwig, J. F. Org. Lett. 2009, 12, 92.
C(O)CF3 with 2f formed protected allylamines 4b and 5b in 93%
and 92% ee (entries 9 and 10). The reactions of NaTs with allylic
benzoates 2f and 2l generated (S)-7b (R ) Ph) and (R)-7c (R )
2-Me-C6H4) in good yields with excellent enantioselectivities
(entries 11 and 12). Furthermore, the sodium salts of dimethyl
malonate and malononitrile reacted with 2f to form allylic alkylation
products 8b and 9b in 98% and 91% ee (entries 13 and 14).
In principle, enantioselective allylic substitution without isomer-
ization is possible if the rate of nucleophilic attack on complex A
(k5) greatly exceeds that for collapse to the linear allylic benzoate
(k3) (Scheme 1). The identity of the nucleophile does not substan-
tially alter the ratio of rate constants k5/k3. However, ortho
substitution on the aromatic group (R) of 2 did substantially change
the ratio of rate constants k5/k3. The branched aromatic allylic
benzoate 2k containing a small ortho-fluoro group (entry 6) reacted
like para- and meta-substituted branched allylic benzoates to form
(S)-3k with high enantioselectivity. In contrast, branched aromatic
allylic benzoates containing larger ortho substituents rearranged to
the linear isomer much more slowly than did the ortho-fluoro-,
meta-, and para-substituted substrates. Thus, ortho-methyl derivative
2l underwent substitution in a manner that was similar to that of
the aliphatic electrophiles; the reactions of NaOPh and NaTs with
aromatic allylic benzoate 2l (R ) o-Me-C6H4) formed allyl aryl
ether (R)-3l in 83% yield and 84% ee and allylic sulfone (R)-7c in
93% yield and 94% ee by addition of the nucleophile at the same
time as the catalyst (entry 7). The enantioselectivities of the
reactions of the branched cinnamyl carbonates containing ortho
substituents were substantially higher than those of the linear isomer,
further underscoring the improved transformations that can be
realized in some cases by use of the branched isomers.
(4) (a) Bartels, B.; Helmchen, G. Chem. Commun. 1999, 741. (b) Bartels, B.;
Garc´ıa-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J. Inorg. Chem. 2002,
2569. (c) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem.
Soc. 2004, 126, 1628. (d) Polet, D.; Alexakis, A.; Tissot-Croset, K.;
Corminboeuf, C.; Ditrich, K. Chem.sEur. J. 2006, 12, 3596.
(5) (a) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104. (b) Malkov,
A. V.; Spoor, P.; Vinader, V.; Kocovsky, P. Tetrahedron Lett. 2001, 42,
509. (c) Glorius, F.; Neuburger, M.; Pfaltz, A. HelV. Chim. Acta 2001, 84,
3178. (d) Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159.
(6) (a) Pre´toˆt, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 323. (b) Pa`mies,
D´ı; eguez, M.; Claver, C. J. Am. Chem. Soc. 2005, 127, 3646.
(7) Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5,
1713.
(8) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van Haitsma, J. T.; Samas,
B. M. Org. Lett. 2009, 11, 3140.
(9) (a) Hayashi, T.; Kishi, K.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990,
31, 1743. (b) You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X.
J. Am. Chem. Soc. 2001, 123, 7471.
(10) Shekhar, S.; Trantow, B.; Leitner, A.; Hartwig, J. F. J. Am. Chem. Soc.
2006, 128, 11770.
(11) Markovic´, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 11680.
(12) The remaining branched allylic benzoate 2a was isolated in 52% yield
(based on 2.2 equiv of 2a) and 78% ee. The ee of the remaining 2a-e is
necessarily modest in reactions conducted with 2.2 equiv of 2a-e that occur
to form products 3-9 with high ee. However, the ee of remaining 2a was
94-97% with concomitant decreasing ee of 3a (75-93%) when performing
the reactions of NaOPh with less than 2.2 equiv of 2a (1.8-2.0 equiv).
See Table S1 in the Supporting Information for these data.
(13) For recent examples of enantioselective ligand-accelerated allylic alkylation
with Grignard reagents to set a neopentyl stereocenter, see: Jackowski, O.;
Alexakis, A. Angew. Chem., Int. Ed. 2010, 49, 3346.
(14) The rates of formation of allyliridium complexes A and B from the linear
allylic benzoate are considered to be negligible in this analysis because
the linear allylic benzoate does not undergo conversion under these reaction
conditions.
(15) The selectivity factor (s) ) ln{(1- c)(1-ee)}/ln{(1- c)(1 + ee)} where c
is the conversion of (()-2f and ee is the enantiomeric excess of the
remaining branched allylic benzoate 2f. Kagan, H. G.; Fiaud, J. C. Topics
in Stereochemistry; John Wiley & Sons; New York, 1988; Vol. 18, p 249.
In summary, we have developed versatile methods for iridium-
catalyzed, kinetic asymmetric substitution of racemic allylic elec-
trophiles. These reactions occur between a variety of aliphatic,
aromatic, and heteroaromatic allylic benzoates and a range of
anionic heteroatom and carbon nucleophiles to form the corre-
JA103779E
9
8920 J. AM. CHEM. SOC. VOL. 132, NO. 26, 2010