Tobisu et al.
JOCArticle
SCHEME 1. Catalytic C-H Bond Functionalization through
Acyl and Imidoyl Metal Species
TABLE 1. Palladium-Catalyzed Cyclocoupling of 2-Bromobiphenyl
(1a) with Isocyanide 2aa
entry
variations from “standard” conditions
yield of 3aa (%)b
1
2
3
4
5
6
7
8
none
95
94
86
54
80
42
trace
45
PCy3 as ligand
PdCl2 as catalyst precursor
Cs2CO3 as base
K2CO3 as base
toluene as solvent
dioxane as solvent
80 °C for 20 h
aReaction conditions: 1a (0.25 mmol), 2a (0.30 mmol), Pd(OAc)2
(0.0125 mmol), PPh3 (0.025 mmol), and CsOPiv (0.30 mmol) in DMF
(2.0 mL) at 100 °C for 5 h. bIsolated yield based on 1a.
7-methyl-1H-indole is catalyzed by a ruthenium complex via
the insertion of an isocyanide moiety into the C-H bond of
methyl groups.6 Tanaka and Jones independently reported
the catalytic insertion of isocyanides into a C-H bond of
benzene under photochemical conditions.7 The palladium-
catalyzed cascade coupling of aryl isocyanides with 6-iodo-
N-propargylpyridones was reported by Curran.8 Despite
these precedents, there remains a need to develop more
general catalytic reactions to assess the utility of isocyanides
in C-H bond functionalization reactions.
In the present study, Larock’s palladium-catalyzed cyclo-
carbonylation of 2-halobiaryls A, in which fluoren-9-one
derivatives C are formed through C-H bond cleavage, was
chosen as a model reaction (Scheme 1a).3j,k The hypothesis is
that replacing carbon monoxide with isocyanides in this
reaction would lead to the formation of the corresponding
imine derivatives E if an imidoyl palladium intermediate D
possesses a reactivity comparable to acyl palladium B toward
the C-H bonds nearby (Scheme 1b). The feasibility of the
hypothesis is supported, in part, by Larock’s report that
imidoyl palladium D that is generated by unique aryl-to-
imidoyl palladium migration can undergo cyclization to
afford imine E (Scheme 1c).9 This report documents the
development of palladium-catalyzed cyclocoupling of 2-
halobiaryls with isocyanides, as in Scheme 1b, demonstrat-
ing that isocyanides can be utilized as a C1 component in
C-H bond functionalization reactions.
Results and Discussion
A palladium-catalyzed reaction of 2-bromobiphenyl (1a)
with isocyanide 2a was initially examined to test the ability of
isocyanides to work in Larock’s cyclocarbonylation.3j,k The
expected imine 3aa was obtained in high yield (Table 1). In
reactions using carbon monoxide, PCy3 has been the optimal
ligand and the use of PPh3 has reduced the yield of the
product.3j,k However, both PPh3 and PCy3 served as an
(4) Carbonyl sources other than CO have also been utilized in transition-
metal-catalyzed C-H bond functionalization reactions. Aldehydes: (a) Jia,
X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120. (b)
ꢀ
Basle, O.; Bidange, J.; Shuai, Q.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 1145.
Acid halides and derivatives: (c) Kochi, T.; Urano, S.; Seki, H.; Mizushima,
E.; Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792. Isocyanates
and ketenes: (d) Hong, P.; Yamazaki, H.; Sonogashira, K.; Hagihara, N.
Chem. Lett. 1978, 8, 535. (e) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.;
Takai, K. J. Am. Chem. Soc. 2005, 128, 202. CO2: (f) Sugimoto, H.; Kawata,
I.; Taniguchi, H.; Fujiwara, Y. J. Organomet. Chem. 1984, 266, C44. (g) Choi,
J.-C.; Kobayashi, Y.; Sakakura, T. J. Org. Chem. 2001, 66, 5262. Formic
acid: (h) Sugimoto, H.; Kawata, I.; Taniguchi, H.; Fujiwara, Y. J. Organo-
met. Chem. 1984, 266, C44. (i) Shibahara, F.; Kinoshita, S.; Nozaki, K. Org.
Lett. 2004, 6, 2437. Azidocarboxylates: (j) Yu, W. Y.; Sit, W. N.; Lai, K. M.;
Zhou, Z. Y.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304.
(5) (a) Chatani, N.; Oshita, M.; Tobisu, M.; Ishii, Y.; Murai, S. J. Am.
Chem. Soc. 2003, 125, 7812. (b) Oshita, M.; Yamashita, K.; Tobisu, M.;
Chatani, N. J. Am. Chem. Soc. 2005, 127, 761. (c) Yoshioka, S.; Oshita, M.;
Tobisu, M.; Chatani, N. Org. Lett. 2005, 7, 3697. (d) Tobisu, M.; Oshita, M.;
Yoshioka, S.; Kitajima, A.; Chatani, N. Pure Appl. Chem. 2006, 78, 275. (e)
Tobisu, M.; Yamaguchi, S.; Chatani, N. Org. Lett. 2007, 9, 3351. (f) Tobisu,
M.; Kitajima, A.; Yoshioka, S.; Hyodo, I.; Oshita, M.; Chatani, N. J. Am.
Chem. Soc. 2007, 129, 11431. (g) Tobisu, M.; Ito, S.; Kitajima, A.; Chatani,
N. Org. Lett. 2008, 10, 5223.
(3) (a) Murahashi, S. J. Am. Chem. Soc. 1955, 77, 6403. (b) Murahashi, S.;
Horiie, S. J. Am. Chem. Soc. 1956, 78, 4816. (c) Hong, P.; Yamazaki, H.
Chem. Lett. 1979, 8, 1335. (d) Fisher, B. J.; Eisenberg, R. Organometallics
1983, 2, 764. (e) Sakakura, T.; Tanaka, M. Chem. Lett. 1987, 16, 1113. (f )
Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am.
Chem. Soc. 1990, 112, 7221. (g) Moore, E. J.; Pretzer, W. R.; O’Connell, T. J.;
Harris, J.; LaBounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992,
114, 5888. (h) Taniguchi, Y.; Yamaoka, Y.; Nakata, K.; Takaki, K.;
Fujiwara, Y. Chem. Lett. 1995, 24, 345. (i) Lu, W.; Yamaoka, Y.; Taniguchi,
Y.; Kitamura, T.; Takaki, K.; Fujiwara, Y. J. Organomet. Chem. 1999, 580,
290. ( j) Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675. (k) Campo,
M. A.; Larock, R. C. J. Org. Chem. 2002, 67, 5616. (l) Orito, K.; Horibata, A.;
Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.;
Tokuda, M. J. Am. Chem. Soc. 2004, 126, 14342. (m) Orito, K.; Miyazawa,
M.; Nakaura, T.; Horibata, A.; Ushito, H.; Nagasaki, H.; Yuguchi, M.;
Yamashita, S.; Yamazaki, T.; Tokuda, M. J. Org. Chem. 2006, 71, 5951.
(n) Funk, J. K.; Yennawar, H.; Sen, A. Helv. Chim. Acta 2006, 89, 1687. (o)
Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082. (p) Guan, Z. H.; Ren,
Z. H.; Spinella, S. M.; Yu, S.; Liang, Y. M.; Zhang, X. J. Am. Chem. Soc.
2009, 131, 729. (q) Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford, J. G.;
(6) (a) Jones, W. D.; Kosar, W. P. J. Am. Chem. Soc. 1986, 108, 5640. (b)
Hsu, G. C.; Kosar, W. P.; Jones, W. D. Organometallics 1994, 13, 385.
(7) (a) Tanaka, M.; Sakakura, T.; Tokunaga, Y.; Sodeyama, T. Chem.
Lett. 1987, 16, 2373. (b) Jones, W. D.; Foster, G. P.; Putinas, J. M. J. Am.
Chem. Soc. 1987, 109, 5047. (c) Jones, W. D.; Hessell, E. T. Organometallics
1990, 9, 718.
ꢀ
Tyler, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I.
(8) Curran, D. P.; Du, W. Org. Lett. 2002, 4, 3215.
(9) Zhao, J.; Yue, D.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc.
2007, 129, 5288.
Angew. Chem., Int. Ed. 2009, 48, 1830. (r) Giri, R.; Lam, J. K.; Yu, J.-Q.
J. Am. Chem. Soc. 2010, 132, 686.
4836 J. Org. Chem. Vol. 75, No. 14, 2010