C O M M U N I C A T I O N S
concentration (cosolvent). The bis-olefinated product (3n) was obtained
in 75% isolated yield (Scheme 1).
References
(1) For lead references on Heck couplings, see: (a) Bra¨se, S.; de Meijere, A.
In Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich,
F., Eds.; Wiley-VCH: New York, 2004; p 217. (b) Nicolaou, K. C.; Bulger,
P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
(2) (a) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 1119. (b) Jia, C.; Piao, D.;
Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992. (c)
Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633.
(3) For use of oxidative C-H olefination reactions in natural product synthesis,
see: (a) Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D.
J. Am. Chem. Soc. 2002, 124, 11856. (b) Tsai, A. S.; Bergman, R. G.;
Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 6316.
(4) (a) Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452.
(b) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
(c) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327,
315. (d) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am.
Chem. Soc. 2010, 132, 460. (e) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am.
Chem. Soc. 2010, 132, 3680.
(5) For intermolecular oxidative Heck couplings, see: (a) Dams, M.; De Vos, D. E.;
Celen, S.; Jacobs, P. A. Angew. Chem., Int. Ed. 2003, 42, 3512. (b) Yokota,
T.; Tani, M.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2003, 125, 1476. (c)
Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem.,
Int. Ed. 2005, 44, 3125. (d) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. J. Am.
Chem. Soc. 2007, 129, 7666. (e) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am.
Chem. Soc. 2008, 130, 9254. (f) Garc´ıa-Rubia, A.; Arraya´s, R. G.; Carretero,
J. C. Angew. Chem., Int. Ed. 2009, 48, 6511. For intramolecular oxidative
Heck couplings, see: (g) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc.
2003, 125, 9578. (h) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem.,
Int. Ed. 2004, 43, 6144. (i) Wu¨rtz, S.; Rakshit, S.; Neumann, J. J.; Dro¨ge, T.;
Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230.
(6) (a) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer,
P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc.
2002, 124, 1586. See also : (b) Wang, J.-R.; Yang, C.-T.; Liu, L.; Guo,
Q.-X. Tetrahedron Lett. 2007, 48, 5449.
(7) (a) Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
7094. See also: (b) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura,
M. J. Org. Chem. 1998, 63, 5211. (c) Ueura, K.; Satoh, T.; Miura, M.
Org. Lett. 2007, 9, 1407. (d) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem.
2007, 72, 5362. (e) Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2010, 12, 2068.
(8) Examples of C-H activations utilizing acetanilides as substrates: (a) Stuart,
D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem.
Soc. 2008, 130, 16474. (b) Phipps, R. J.; Gaunt, M. J. Science 2009, 323,
1593. (c) Lyons, T. W.; Sanford, M. S. Chem. ReV. 2010, 110, 1147. (d)
Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156. (e) Wan,
X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc.
2006, 128, 7416. (f) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.;
Qin, C.; Wang, Y. Angew. Chem., Int. Ed. 2007, 46, 5554. (g) Yang, S.; Li,
B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066. (h) Campeau, L.-
C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35.
(9) See Supporting Information for further information.
Additionally, this method was found applicable to the olefination
of biologically relevant acetyl-indole, bearing a tertiary amide directing
group, resulting in the selective coupling at the 2-position, although
in modest yield under standard conditions (Scheme 1, 3o).12
Our preliminary investigation indicates that the initial rate of the
reaction is high but tends to decrease dramatically. Indeed, product
3a is already obtained in 77% conversion after only 3 h (80% after
16 h, Scheme 1). Furthermore, our investigation shows that in all cases
it is difficult to reach full conversion. This indicates that the product
is a strong competitor for coordination to the active sites of the catalyst
due to bidentate binding through the acetyl and the olefin functional-
ities.13 Thus, the product seems to be a poison to its own formation.
In the case of activated olefins such as butyl-acrylate, however, a
quantitative yield of the coupling product could be obtained (3p, 98%,
Scheme 1). In this case the reaction is so fast that 90% conversion
(1H NMR) is obtained after only 5 min.9 Thus, the average TOF is
∼1080 h-1, a high value for C-C bond formation catalysis.14
Moreover, preliminary experiments show that air can serve as an
oxidant in this reaction when using a catalytic amount of Cu(OAc)2
(10 mol %). This afforded 3c and 3p in 61% and 97% isolated yields,
respectively (no reaction was obtained without Cu salt).9 While Liu,
Guo et al. reported the use of O2 as an oxidant in a related Pd catalyzed
C-H activation,6b arguably, the use of air or O2 as terminal oxidants
in homogeneous rhodium catalysis is less common.
Importantly, submitting the catalytic system to a mild pressure of
ethylene (2 bar) selectively yielded styrene 3q in 48% yield, although
a higher catalytic loading is required in this case to achieve a
satisfactory conversion (2.5 mol%, Scheme 1).9,15 Neither diolefination
nor multiple step coupling products were observed. The preparation
of styrenes by direct catalytic oxidative-Heck coupling with ethylene
is usually acknowledged to be difficult, poorly selective, and only
feasible under harsh conditions.16 The implications of this discovery
are therefore tremendous due to the synthetic versatility of the vinyl
group.17 Furthermore, the high tolerance of this transformation (e.g.,
halides, esters) leads to the assumption that this reaction could be
incorporated in late stage total synthesis.
(10) The transformation is highly selective for the formation of the trans-olefin
product. The cis-isomer was not detected, neither by GC-MS nor by 1H
NMR of the crude products.
(11) Steric congestion near the acetanilide directing group slows down the
reaction and deteriorates the yield:
In conclusion, we have developed a novel methodology to
achieve the direct ortho olefination and vinylation of acetanilides.
This methodology is attractive since the catalytic loadings are very
low and since acetanilides are easily prepared and hydrolyzed to
the corresponding anilines. It also allows electron-withdrawing (R2
) CF3, 3d) as well as -donating groups (R3 ) OMe, 3b) and
provides the products in yields of up to 98% (3p). Furthermore
this method affords the direct and selective vinylation of acetanilides
from ethylene (product 3q), a powerful method for the preparation
of styrenes. The versatility of the produced olefins, the general
attractiveness of the method, and the high levels of regio- and
chemoselectivity obtained should lead to many applications,
especially in natural product total synthesis.
(12) Increasing the temperature or the catalytic loading did not significantly
improve the yield in this case. However, no side products were observed.
(13) For the application of a structurally related olefin-oxazoline ligand in Rh
catalysis, see: Hahn, B. T.; Tewes, F.; Fro¨hlich, R.; Glorius, F. Angew.
Chem., Int. Ed. 2010, 49, 1143.
(14) The high value of the TOF for the acrylate substrate is in accordance with
previous reports on related transformations; see refs 2 and 3.
(15) It should be noted that when 1-octene was engaged as a substrate, only
trace amounts of product could be detected.
(16) For styrene preparation through prior activation, see: (a) Lindh, J.;
Sa¨vmarker, J.; Nilsson, P.; Sjo¨berg, P. J. R.; Larhed, M. Chem.sEur. J.
2009, 15, 4630. (b) Smith, C. R.; RajanBabu, T. V. Tetrahedron 2010, 66,
1102. For direct catalytic C-H oxidative Heck coupling to ethylene, see:
(c) Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am.
Chem. Soc. 1969, 91, 7166. (d) Moritani, I.; Fujiwara, Y. Synthesis 1973,
524. (e) Yamada, T.; Sakakura, A.; Sakaguchi, S.; Obora, Y.; Ishii, Y.
New J. Chem. 2008, 32, 738. For the vinylation of preformed palladacycles,
see: (f) Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416.
Acknowledgment. We thank the Alexander von Humboldt
Foundation (F.P.) and AstraZeneca for generous support as well
as Souvik Rakshit (1o) and Dr. Tatiana Besset (2j, 2l) for
discussions and substrate preparation. The research of F.G. has been
supported by the Alfried Krupp Prize for Young University
Teachers of the Alfried Krupp von Bohlen und Halbach Foundation.
(17) For two of the many types of transformations of terminal olefins, see reviews
on Ru catalyzed olefin metathesis: (a) Fu¨rstner, A. Angew. Chem., Int. Ed.
2000, 39, 3012. (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117. For an
overview on Rh catalyzed hydroformylation, see: (c) van Leeuwen,
P. W. N. M. Homogeneous Catalysis: Understanding the Art; Kluwer:
Dordrecht, the Netherlands, 2004.
Supporting Information Available: Experimental and characteriza-
tion details. This material is available free of charge via the Internet at
JA103834B
9
J. AM. CHEM. SOC. VOL. 132, NO. 29, 2010 9983