pubs.acs.org/joc
to accrue sufficient interactions between the protein surfaces
Facile Iterative Synthesis of 2,5-Terpyrimidinylenes
as Nonpeptidic r-Helical Mimics
and stabilize their specific interaction with each other.9-12
Thus, the development of specific PPI inhibitors is a challen-
ging task as compared to enzyme inhibitors, which typically
have relatively small and deep binding pockets.
Laura Anderson,†,‡ Mingzhou Zhou,†,‡ Vasudha Sharma,‡
Jillian M. McLaughlin,‡ Daniel N. Santiago,†
Frank R. Fronczek,§ Wayne C. Guida,†,‡ and
Mark L. McLaughlin*,†,‡
Several different secondary and tertiary structures can be in-
volved in the PPI, and one that is the focus of this manuscript is
the R-helix. Hamilton et al. have discovered R-helix mimics that
act as submicromolar inhibitors of the Bcl-xL interaction with
the Bak peptide and the MDM2 interaction with the p53 peptide
derived from the p53 N-terminus.13,14 The Hamilton group has
reported several R-helix mimics, but none of them have been
more active than the best reported 1,4-terphenylene scaffolds
against the same targets in the same in vitro assays.15-19
Rebek et al. recognized the importance of Hamilton’s R-helix
mimic approach and published several examples of more polar
versions of the original Hamilton 1,4-terphenylene scaffold20-24
including a tetrameric heterocyclic R-helix mimic scaffold de-
signed to position four side chains in the i, i þ 4, i þ 7, and i þ 11
positions of an R-helix.24 Recently, Hamilton’s group has also
published a repetitive heterocyclic scaffold approach.25 The
intense efforts of these research groups to develop repetitive
heterocyclic scaffolds to mimic R-helices illustrates the very
strong potential importance of this class of compounds.
With the seminal work from the Hamilton group on the
1,4-terphenylene scaffold as a guide, we have developed a
facile iterative synthesis of 2,5-terpyrimidinylenes as struc-
turally analogous R-helix mimics.26,27 Figure 1 shows an
overlay of octa-alanine in an idealized R-helical conforma-
tion with its i, i þ 4, and i þ 7 methyl groups highlighted as
gold spheres and a 4,40,400-trimethyl-2,5-terpyrimidinylene
with its methyl groups highlighted as green spheres.
†Department of Chemistry, University of South Florida,
4202 E. Fowler Avenue, CHE 205, Tampa, Florida 33620,
‡Drug Discovery Department, H. Lee Moffitt Cancer Center,
12902 Magnolia Drive, MRC 4E, Tampa, Florida 33612, and
§Department of Chemistry, Louisiana State University,
232 Choppin Hall, Baton Rouge, Louisiana 70803
Received February 13, 2010
A facile iterative synthesis of 2,5-terpyrimidinylenes that are
structurally analogous to R-helix mimics is presented. Con-
densation of amidines with readily prepared R,β-unsaturated
R-cyanoketones gives 5-cyano-substituted pyrimidines. Itera-
tive transformation of the 5-cyano group into an amidine
allows synthesis of 2,5-terpyrimidinylenes with variable
groups at the 4-, 40-, and 400-positions. These compounds
are designed to mimic the i, iþ 4, and iþ 7sitesofanR-helix.
(9) Parthasarathi, L.; Casey, F.; Stein, A.; Aloy, P.; Shields, D. C.
J. Chem. Inf. Model. 2008, 48, 1943–1948.
(10) Neugebauer, A.; Hartmann, R. W.; Klein, C. D. J. Med. Chem. 2007,
50, 4665–4668.
(11) Nieddu, E.; Pasa, S. Curr. Top. Med. Chem. (Sharjah, United Arab
Emirates) 2007, 7, 21–32.
(12) Fletcher, S.; Hamilton, A. D. J. R. Soc. Interface 2006, 3, 215–233.
(13) Yin, H.; Gui-in, L.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.;
Sebti, S. M.; Hamilton, A. D. Angew. Chem., Int. Ed. 2005, 44, 2704–2707.
(14) Chen, L.; Yin, H.; Farooqi, B.; Sebti, S. M.; Hamilton, A. D.; Chen,
J. Mol. Cancer Ther. 2005, 4, 1019–1025.
(15) Ernst, J. T.; Becerril, J.; Park, H. S.; Yin, H.; Hamilton, A. D. Angew.
Chem., Int. Ed. 2003, 42, 535–539.
(16) Yin, H.; Gui-in, L.; Sedey, K. A.; Rodriguez, J. M.; Wang, H.-G.;
Sebti, S. M.; Hamilton, A. D. J. Am. Chem. Soc. 2005, 127, 5463–5468.
(17) Davis, J. M.; Truong, A.; Hamilton, A. D. Org. Lett. 2005, 7, 5405–5408.
(18) Rodriguez, J. M.; Hamilton, A. D. Tetrahedron Lett. 2006, 47, 7443–
7446.
(19) Saraogi, I.; Incarvito, C. D.; Hamilton, A. D. Angew. Chem., Int. Ed.
2008, 47, 9691–9694.
(20) Moisan, L.; Odermatt, S.; Gombosuren, N.; Carella, A.; Rebek, J.
Eur. J. Org. Chem. 2008, 10, 1673–1676.
Protein-protein interactions (PPIs) are involved in sev-
eral cellular processes, and the specific modulation of these
interactions will boost our understanding of them.1,2
Furthermore, PPI inhibitors can be the basis of important
therapeutic interventions.3-8 PPIs are typically shallow sur-
face interactions that occur over relatively large surface areas
(21) Moisan, L.; Dale, T. J.; Gombosuren, N.; Biros, S. M.; Mann, E.;
Hou, J.-L.; Crisostomo, F. P.; Rebek, J. Heterocycles 2007, 73, 661–671.
(22) Volonterio, A.; Moisan, L.; Rebek, J. Org. Lett. 2007, 9, 3733–3736.
(23) Biros, S. M.; Moisan, L.; Mann, E.; Carella, A.; Zhai, D.; Reed, J. C.;
Rebek, J. Bioorg. Med. Chem. Lett. 2007, 17, 4641–4645.
(24) Restorp, P.; Rebek, J. Bioorg. Med. Chem. Lett. 2008, 18, 5909–5911.
(25) Cummings, C. G.; Ross, N. T.; Katt, W. P.; Hamilton, A. D. Org.
Lett. 2009, 11, 25–28.
(1) Berg, T. Curr. Opin. Drug Discovery Dev. 2008, 11, 666–674.
(2) Saraogi, I.; Hamilton, A. D. Biochem. Soc. Trans. 2008, 36, 1414–
1417.
(3) Ockey, D. A.; Gadek, T. R. Expert Opin. Ther. Pat. 2002, 12, 393–400.
(4) Arkin, M. R.; Wells, J. A. Nat. Rev. Drug Discovery 2004, 3, 301–317.
(5) Pagliaro, L.; Felding, J.; Audouze, K.; Nielsen, S. J.; Terry, R. B.;
Krog-Jensen, C.; Butcher, S. Curr. Opin. Chem. Biol. 2004, 8, 442–449.
(6) Fletcher, S.; Hamilton, A. D. Curr. Top. Med. Chem. (Sharjah, United
Arab Emirates) 2007, 7, 922–927.
(26) Ernst, J. T.; Kutzki, O.; Debnath, A. K.; Jiang, S.; Lu, H.; Hamilton,
A. D. Angew. Chem., Int. Ed. 2002, 41, 278–281.
(7) Wells, J. A.; McClendon, C. L. Nature (London) 2007, 450, 1001–1009.
(8) Yin, H.; Hamilton, A. D. Chem. Biol. 2007, 1, 250–269.
(27) Kutzki, O.; Park, H. S.; Ernst, J. T.; Orner, B. P.; Yin, H.; Hamilton,
A. D. J. Am. Chem. Soc. 2002, 124, 11838–11839.
4288 J. Org. Chem. 2010, 75, 4288–4291
Published on Web 05/14/2010
DOI: 10.1021/jo100272d
r
2010 American Chemical Society