S. Chandrasekhar et al. / Tetrahedron Letters 51 (2010) 3623–3625
3625
4. (a) Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S. Tetrahedron Lett. 2008, 49,
6974; (b) Kouznetsov, V. V.; Arenas, D. R. M.; Bohorqez, A. R. R. Tetrahedron Lett.
2008, 49, 3097.
5. Zhou, H.-F.; Fan, Q.-H.; Tang, W.-J.; Xu, L. J.; He, Y.-M.; Deng, G.-J.; Zhao, L.-W.;
Gu, L.-Q.; Chan, A. S. C. Adv. Synth. Catal. 2006, 348, 2172.
i) PdCl2/CuCl2 (5 mol%),
PEG/H2O (8:2)
N
N
R
R
R1
ii). 1,2-diaminobenzene
rt, 14 - 20h
R1
6. (a) Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S. S.; Reddy, N. R. Chem.
Commun. 2003, 1716; (b) Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S. S.;
Reddy, N. R. Org. Lett. 2002, 4, 4399; (c) Chandrasekhar, S.; Narsihmulu, Ch.;
Saritha, B.; Sultana, S. S. Tetrahedron Lett. 2004, 45, 5865; (d) Chandrasekhar, S.;
Narsihmulu, Ch.; Chandrasekhar, G. Tetrahedron Lett. 2004, 45, 2421; (e)
Chandrasekhar, S.; Narsihmulu, Ch.; Reddy, N. R. Tetrahedron Lett. 2004, 45,
4581; (f) Chandrasekhar, S.; Reddy, G. P. K.; Nagesh, Ch.; Reddy, Ch. R.
Tetrahedron Lett. 2007, 48, 1269.
Scheme 2. Oxidation of alkynes to 1,2-diketones.
Table 4
One-pot synthesis of quinoxaline derivatives
S.No
Alkyne
Time (h)
Quinoxalinea
Yieldb (%)
7. (a) Deng, X.; Mani, N. S. Org. Lett. 2006, 8, 269; (b) Lee, D.; Chang, V. S. Synthesis
1978, 462.
8. (a) Li, P.; Cheong, F. H.; Chao, L. C. F.; Lin, Y. H.; Williams, I. D. J. Mol. Catal. A
1999, 145, 111; (b) Sheu, C.; Richert, S. A.; Cofre, P.; Ross, B., Jr.; Sobkowiak, A.;
Sawyer, D. T.; Kanofsky, J. R. J. Am. Chem. Soc. 1990, 112, 1936; (c) Giraud, A.;
Provot, O.; Peyrat, J. F.; Alami, M.; Brion, J. D. Tetrahedron 2006, 62, 7667.
9. (a) Wan, Z.; Jones, C. D.; Mitchell, D.; Pu, J. Y.; Zhang, T. Y. J. Org. Chem. 2006, 71,
826; (b) Yusubov, M. S.; Zholobova, G. A.; Vasilevsky, S. F.; Tretyakov, E. V.;
Knight, D. W. Tetrahedron 2002, 58, 1607; (c) Rogatchov, V. O.; Filimonov, V. D.;
Yusubov, M. S. Synthesis 2001, 1001.
N
N
3a
1
lb
16
80
OH
10. Ren, W.; Xia, Y.; Jun Ji, S.; Zhang, Y.; Wan, X. Org. Lett. 2009, 11, 1841.
11. Chu, J.; Chen, Y.; wu, M. Synthesis 2009, 2155.
12. Gebeyehu, G.; McNelis, E. J. Org. Chem. 1980, 45, 4280.
N
N
13. General procedure for 1,2-diketones: To a stirred solution of alkyne (1 mmol) in
10 mL PEG/H2O (8:2) were added PdCl2 (5 mol %) and CuCl2 (5 mol %). The
solution was stirred at room temperature for the completion of the reaction
(see Table 1). The solution was diluted with ether (2 Â 20 mL) and cooled in ice
bath. The ether layer was separated, dried over anhydrous Na2SO4, and
concentrated under vacuum. The residue was purified by column
chromatography to give the corresponding 1,2-diketone in good yield.
Spectral data of representative new products (2b): 1H NMR (300 MHz, CDCl3): d
7.95 (d, J = 7.3 Hz, 2H), 7.70–7.62 (t, J = 7.3 Hz, 1H), 7.55–7.45 (m, 4H), 7.40–
7.32 (d, J = 7.9, 8.1 Hz, 1H), 7.17–7.12 (m, 1H), 5.89 (s, 1H); 13C NMR (75 MHz,
CDCl3): d 194.8, 194.6, 156.4, 135.1, 134.1, 132.7, 130.4, 129.9, 129.0, 122.8,
2
3
lc
le
14
20
81
75
3b
CN
N
N
3c
122.6, 115.5; IR (KBr):
m 3421, 3060, 2924, 1660, 1618, 1477, 1176, 861,
710 cmÀ1; MS-ESI: m/z 249 (M+Na)+.
CH3
Compound (2d): 1H NMR (300 MHz, CDCl3): d 7.97 (d, J = 8.3 Hz, 2H), 7.77–7.64
(m, 3H), 7.58–7.45 (m, 3H), 7.41–7.32 (m, 1H); 13C NMR (75 MHz, CDCl3): d
193.6, 193.0, 164.4, 135.0, 132.6, 130.8, 130.7, 129.9, 129.0, 125.9, 122.1, 121.8,
N
N
116.1, 115.8; IR (KBr):
m 3325, 3070, 2923, 1670, 1587, 1446, 1241, 837,
717 cmÀ1; MS-ESI: m/z 251 (M+Na)+.
4
lg
15
78
Compound (2f): 1H NMR (300 MHz, CDCl3): d 7.98–7.93 (m, 2H), 7.91–7.86 (m,
2H), 7.66–7.59 (m, 1H), 7.53–7.46 (m, 4H), 1.35 (s, 9H); 13C NMR (75 MHz,
CDCl3): d 194.7, 194.2, 159.0, 134.7, 133.1, 130.4, 129.8, 128.9, 126.0, 35.3,
3d
30.9, 29.6; IR (KBr):
ESI: m/z 289 (M+Na)+.
m
3464, 2963, 1670, 1598, 1217, 1177, 882, 661 cmÀ1; MS-
OMe
Compound (2g): 1H NMR (300 MHz, CDCl3): d 7.98–7.93 (m, 2H), 7.91–7.86 (m,
2H), 7.66–7.59 (m, 1H), 7.53–7.46 (m, 4H), 1.35 (s, 9H); 13C NMR (75 MHz,
CDCl3): d 194.7, 194.2, 160.4, 138.1, 134.6, 133.1, 133.0, 131.3, 129.8, 128.8,
Products were characterized by 1H, 13C NMR, and mass spectroscopy.
Isolated yields.
a
b
128.1, 127.6, 127.4, 124.3, 119.9, 105.8, 55.3; IR (KBr):
m 3431, 3060, 2925,
2841, 1662, 1617, 1478, 1263, 860, 710 cmÀ1; MS-ESI: m/z 313 (M+Na)+.
14. (a) Nair, V.; Dhanya, R.; Rajesh, C.; Bhadbhade, M. M.; Manoj, K. Org. Lett. 2004,
6, 4743; (b) Aqad, E.; Lakshmikantham, M. V.; Cava, M. P. Org. Lett. 2003, 5,
4089; (c) Heravi, M. M.; Baghaernejad, B.; Oskooie, H. A. Tetrahedron Lett. 2009,
50, 767; (d) Madhav, B.; Murthy, S. N.; Reddy, V. P.; Rao, K. R.; Nageswar, Y. V.
D. Tetrahedron Lett. 2009, 50, 6025.
and the results are summarized in Table 4. The reaction of alkynes
1c, 1e, and 1g under the present reaction conditions in the pres-
ence of 1,2-diaminobenzene provided the 2,3-disubstituted quin-
oxaline derivatives in good yields (Table 4, entries 2–4).
In summary, an efficient recyclable catalytic system for the oxi-
dation of internal alkynes to 1,2-diketones has been demonstrated.
5 mol % of PdCl2/CuCl2 in PEG/H2O was used for the described
transformation, and the recyclability has also been proved. Further,
the efficiency of this reagent system in one-pot synthesis of 2,3-
disubstituted quinoxaline derivatives was successfully explored.
15. General procedure for quinoxalines: To a stirred solution of alkyne (1 mmol) in
10 mL PEG/H2O (8:2) were added PdCl2 (5 mol %) and CuCl2 (5 mol %) and the
solution was stirred at room temperature. After the completion of alkyne
(monitored by TLC), 1,2-diaminobenzene (1 mmol) was added and stirring was
continued at room temperature (see Table 4). The solution was diluted with
ether (2 Â 20 mL) and cooled in ice bath. The ether layer was separated, dried
over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified
by column chromatography to give the corresponding 2,3-disubstituted
quinoxaline in good yield.
Spectral data of representative new products (3a): 1H NMR (300 MHz, CDCl3): d
8.21–8.12 (m, 2H), 7.81–7.71 (m, 2H), 7.53–7.42 (m, 2H), 7.30–7.20 (m, 3H),
7.10–6.96 (m, 2H), 6.91–6.83 (d, J = 7.5 Hz, 1H), 6.76–6.69 (m, 1H); 13C NMR
(75 MHz, CDCl3): d 156.1, 153.4, 153.1, 141.1, 140.7, 139.7, 138.5, 130.1, 129.6,
Acknowledgments
N.K.R. thanks UGC and V.P.K. thanks CSIR, New Delhi, for the
financial assistance.
129.3, 129.0, 128.8, 128.6, 128.1, 121.8, 116.8, 116.3; IR (KBr):
m 3053, 2924,
2853, 1581, 1347, 1273, 762, 695 cmÀ1; MS-ESI: m/z 321 (M+Na)+.
Compound (3d): 1H NMR (300 MHz, CDCl3): d 8.24–8.15 (m, 2H), 8.07 (s, 1H),
7.81–7.73 (m, 2H), 7.70 (d, J = 8.8 Hz, 1H), 7.63 (d, J = 8.7 Hz, 2H), 7.59–7.53 (m,
2H), 7.51–7.45 (dd, J = 1.7, 8.5 Hz, 1H), 7.38–7.26 (m, 3H), 7.17–7.08 (m, 2H),
3.92 (s, 3H); 13C NMR (75 MHz, CDCl3): d 158.3, 153.5, 153.3, 141.3, 141.1,
139.2, 134.5, 134.2, 130.1, 129.9, 129.7, 129.6, 129.1, 129.1, 128.7, 128.5, 128.3,
References and notes
1. Ji, C.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64.
2. (a) Li, J.-H.; Hu, X.-C.; Liang, Y.; Xie, Y.-X. Tetrahedron 2006, 62, 31; (b) Yin, L.;
Zhang, Z.-h.; Wang, Y.-M. Tetrahedron 2006, 62, 9359; (c) Li, J.-H.; Liu, W.-J.; Xie,
Y.-X. J. Org. Chem. 2005, 70, 5409.
127.6, 126.4, 119.1, 105.5, 55.3; IR (KBr):
m 3446, 3053, 2921, 2853, 1342, 756,
696 cmÀ1; MS-ESI: m/z 385 (M+Na)+.
3. Alper, H. Pure Appl. Chem. 1988, 60, 35.