S. Aoki et al. / Tetrahedron Letters 51 (2010) 3547–3549
3549
Tian, S.-K.; Hong, R.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900–9901; (k)
Casas, J.; Baeza, A.; Sansano, J. M.; Nájera, C.; Saá, J. M. Tetrahedron:
Asymmetry 2003, 14, 197–200; (l) Tian, J.; Yamagiwa, N.; Matsunaga, S.;
Shibasaki, M. Org. Lett. 2003, 5, 3021–3024; (m) Abiko, Y.; Yamagiwa, N.;
Sugita, M.; Tian, J.; Matsunaga, S.; Shibasaki, M. Synlett 2004, 2434–2436; (n)
Yamagiwa, N.; Tian, J.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2005,
127, 3413–3422; (o) Lundgren, S.; Wingstrand, E.; Penhoat, M.; Moberg, C. J.
Am. Chem. Soc. 2005, 127, 11592–11593; (p) Hatano, M.; Ikeno, T.;
Miyamoto, T.; Ishihara, K. J. Am. Chem. Soc. 2005, 127, 10776–10777; (q)
Wentao, W.; Shaohua, G.; Xiaohua, L.; Xiaoming, F. Synlett 2007, 2875–2878;
(r) Gou, S.; Wang, J.; Liu, X.; Wang, W.; Chen, F.-X.; Feng, X. Adv. Synth. Catal.
2007, 349, 343–349; (s) Chinchilla, R.; Nájera, C.; Ortega, F. J. Tetrahedron:
Asymmetry 2008, 19, 265–268; (t) Hatano, M.; Ikeno, T.; Matsumura, T.; Torii,
S.; Ishihara, K. Adv. Synth. Catal. 2008, 350, 1776–1780; (u) Khan, N. H.;
Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Prathap, K. J.; Jasra, R. V. Eur. J. Org.
Chem. 2008, 4511–4515; (v) Chinchilla, R.; Nájera, C.; Ortega, F. J.; Tari, S.
Tetrahedron: Asymmetry 2009, 20, 2279–2286; (w) Wang, J.; Wang, W.; Li,
W.; Hu, X.; Shen, K.; Tan, C.; Liu, X.; Feng, X. Chem. Eur. J. 2009, 15, 11642–
11659; (x) Khan, N. H.; Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Pathak, K.;
Bajaj, H. C. Chirality 2010, 22, 153–158.
4. For cyanations with acyl cyanides, see: (a) Okimoto, M.; Chiba, T. Synthesis
1996, 1188–1190; (b) Watahiki, T.; Ohba, S.; Oriyama, T. Org. Lett. 2003, 5,
2679–2681; (c) Li, F.; Widyan, K.; Wingstrand, E.; Moberg, C. Eur. J. Org. Chem.
2009, 3917–3922.
5. For cyanations with alkyl cyanoformates, see: (a) Hoffmann, H. M. R.; Ismail, Z.
M.; Hollweg, R.; Zein, A. R. Bull. Chem. Soc. Jpn. 1990, 63, 1807–1810; (b) Poirier,
D.; Berthiaume, D.; Boivin, R. P. Synlett 1999, 1423–1425; (c) Berthiaume, D.;
Poirier, D. Tetrahedron 2000, 56, 5995–6003; (d) Deardorff, D. R.; Taniguchi, C.
M.; Tafti, S. A.; Kim, H. Y.; Choi, S. Y.; Downey, K. J.; Nguyen, T. V. J. Org. Chem.
2001, 66, 7191–7194.
6. Scholl, M.; Lim, C.-K.; Fu, G. C. J. Org. Chem. 1995, 60, 6229–6231.
7. Iwanami, K.; Hinakubo, Y.; Oriyama, T. Tetrahedron Lett. 2005, 46, 5881–5883.
8. The solvent has a great influence on the cyanation of aldehydes. Propionitrile
and neat condition afforded the product in excellent yield (97% and 96%,
respectively), while other solvents gave unsatisfactory results; toluene (trace),
THF (45%), CH2Cl2 (29%) and EtOH (56%).
9. The ethyl carbonate group of 7a could be removed with 1% K2CO3 in MeOH to
afford the corresponding cyanohydrin in 93% yield.
10. Typical procedure for cyanation of aldehydes catalyzed by DMAP (Table 1,
entry 5): To a stirred solution of aldehyde 4a (0.066 mL, 0.5 mmol, 1.0 equiv)
and DMAP (0.61 mg, 0.005 mmol, 1 mol %) in acetonitrile (1 mL) was added
ethyl cyanoformate (3) (0.055 mL, 0.55 mol, 1.1 equiv) at room temperature
under argon atmosphere. The mixture was stirred at the same temperature for
30 min and then brine. The mixture was extracted with EtOAc (10 mL) and the
organic layer was dried over Na2SO4. After concentration, the crude material
was purified by column chromatography (silica gel: 6 g, hexane–EtOAc: 6/1) to
give the product 7a (115.0 mg, 96% yield) as a colorless solid.
11. Typical procedure for cyanation of ketones catalyzed by DMAP (Table 3, entry
3): To a stirred mixture of ketone 8b (0.45 mmol, 1.0 equiv.) and DMAP
(5.5 mg, 0.045 mmol, 10 mol %) was added ethyl cyanoformate (3) (0.049 mL,
0.5 mol, 1.1 equiv) at room temperature under argon atmosphere. The mixture
was stirred at the same temperature for 24 h. The mixture was purified by
column chromatography (silica gel: 6 g, hexane–EtOAc: 4/1) to give the
product 9b (88.0 mg, 99% yield) as a colorless oil.
3. For cyanations with trimethylsilyl cyanide, see: (a) Evans, D. A.; Truesdale, L. K.;
Carroll, G. L. J. Chem. Soc., Chem. Commun. 1973, 55–56; (b) Evans, D. A.;
Truesdale, L. K. Tetrahedron Lett. 1973, 49, 4929–4932; (c) Kobayashi, S.;
Tsuchiya, Y.; Mukaiyama, T. Chem. Lett. 1991, 20, 537–540; (d) Kobayashi, S.;
Tsuchiya, Y.; Mukaiyama, T. Chem. Lett. 1991, 20, 541–544; (e) Golinski, M.;
Brock, C. P.; Watt, D. S. J. Org. Chem. 1993, 58, 159–164; (f) Saravanan, P.;
Anand, R. V.; Singh, V. K. Tetrahedron Lett. 1998, 39, 3823–3824; (g) Bandini, M.;
Cozzi, P. G.; Melchiorre, P.; Umani-Ronchi, A. Tetrahedron Lett. 2001, 42, 3041–
3043; (h) Córdoba, R.; Plumet, J. Tetrahedron Lett. 2003, 44, 6157–6159; (i)
Chen, F.; Feng, X.; Qin, B.; Zhang, G.; Jiang, Y. Org. Lett. 2003, 5, 949–952; (j)
Amurrio, I.; Córdoba, R.; Csaky, A. G.; Plumet, J. Tetrahedron 2004, 60, 10521–
10524; (k) Chen, F.-X.; Wolfert, M. A.; Moore, J. N.; Boons, G.-J. Chem. Eur. J.
2004, 10, 4790–4797; (l) Liu, X. H.; Qin, B.; Zhou, X.; He, B.; Feng, X. M. J. Am.
Chem. Soc. 2005, 127, 8964–8965; (m) Qin, B.; Liu; Xiaohua; Shi, J.; Zheng, K.;
Zhao, H.; Feng, X. J. Org. Chem. 2007, 72, 2374–2378; (n) Wang, X.; Tian, S.-K.
Tetrahedron Lett. 2007, 48, 6010–6013; (o) Shen, K.; Liu, X.; Li, Q.; Feng, X.
Tetrahedron 2008, 64, 147–153; (p) Matsukawa, S.; Sekine, I.; Iitsuka, A.
Molecules 2009, 14, 3353–3359.
12. Pyridine and N,N-dimethylaniline did not promote the cyanation. Therefore,
the nucleophilicity of DMAP plays an important role in the cyanation, as
observed in DMAP-promoted acylation of alcohols.