in order to lower the transition temperatures and is found to
form a stable nematic phase from 110–131 1C.
J. D. MacKenzie, Science, 2001, 293, 1119; (d) W. Pisula,
A. Menon, M. Stepputat, I. Lieberwirth, A. Kolbe, A. Tracz,
H. Sirringhaus, T. Pakula and K. Mullen, Adv. Mater., 2005, 17,
684.
¨
Crystals of 3a suitable for X-ray diffraction15 were obtained
by slow evaporation from hexane/THF. The crystal structure,
Fig. 3, reveals the anticipated near-planar molecular
conformation. Most interesting, however, is the molecular
packing in the crystal. It can be seen that the two triphenylene
units from each twin stack in adjacent columns with
an intracolumnar triphenylene–triphenylene separation of
3.48 A, leading to a unique supramolecular arrangement
where there is now electronic communication both along and
across the stacks. Face-to-face columnar organisation of the
whole molecules is prevented because it would leave a void
within the core and this no doubt accounts for the observed
exclusive nematic behaviour of twins 3.
5 (a) H. Mori, Y. Itoh, Y. Nishuira, Y. Nakamura and
Y. Shinagawa, Jpn. J. Appl. Phys., 1997, 36, 143; (b) K. Kawata,
Chem. Rec., 2002, 2, 59.
6 S. Kumar and S. K. Varshney, Org. Lett., 2002, 4, 157.
7 N. Boden, R. J. Bushby, A. N. Cammidge, A. El-Mansoury,
P. S. Martin and Z. Lu, J. Mater. Chem., 1999, 9, 1391.
8 A. N. Cammidge and H. Gopee, Liq. Cryst., 2009, 36, 809.
9 J. Li, Z. He, H. Gopee and A. N. Cammidge, Org. Lett., 2010, 12,
472.
10 (a) N. Boden, R. C. Borner, R. J. Bushby, A. N. Cammidge and
M. V. Jesudason, Liq. Cryst., 1993, 15, 851; (b) N. Boden,
R. J. Bushby and A. N. Cammidge, J. Chem. Soc., Chem. Commun.,
1994, 465; (c) N. Boden, R. J. Bushby and A. N. Cammidge, J. Am.
Chem. Soc., 1995, 117, 924.
11 A. N. Cammidge and H. Gopee, J. Mater. Chem., 2001, 11
2773.
12 A. N. Cammidge, Philos. Trans. R. Soc. London, Ser. A, 2006, 364,
2697.
13 K. Sonogashira, J. Organomet. Chem., 2002, 653, 46.
14 W. B. Wan, S. C. Brand, J. J. Pak and M. M. Haley, Chem.–Eur.
J., 2000, 6, 2044.
15 Crystal data for 3a (CCDC 769122): C92H116O8, M = 1349.8.
Monoclinic, space group P21/a (equiv. to no. 14), a = 8.8608(6),
In conclusion we have prepared a new class of formally
antiaromatic discotic twins based on dehydroannulene cores
linked through non-adjacent positions on triphenylenes.
Construction in this fashion gives stable, planar, board-like
molecules with intriguing molecular and supramolecular
properties. The X-ray crystal structure of twin 3a shows
the molecule to exist in the expected near-planar conformation
and its packing is particularly intriguing, giving an
arrangement where there is now electronic communication
both along and across the stacks.
b
=
27.2688(16),
V = 3924.6(5) A3, Z = 2, Dc = 1.142 g cmÀ3, F(000) = 1464,
120(2) K, m(Mo-Ka) l(Mo-Ka)
0.7 cmÀ1
0.71073 A. Crystals are yellow plates. Intensity data measured by
thin-slice o- and j-scans on Bruker-Nonius KappaCCD
c = 16.3205(12) A, b = 95.592(2)1,
T
=
=
,
=
a
We thank the EPSRC National Mass Spectrometry
Service Centre, Swansea, and the EPSRC National X-ray
Crystallography Centre, Southampton for support.
diffractometer (at EPSRC National Crystallography Service) with
Mo-Ka radiation and 10 cm confocal mirrors monochromator.
Total no. of reflections recorded, to ymax = 22.51, was 21 077 of
which 5106 unique (Rint = 0.070); 3735 ‘observed’ with I > 2s(I).
Data processed with DENZO/SCALEPACK,16 with absorption
corrections in SADABS.17 Structure determined by direct methods
in SHELXS,18 and refined in SHELXL.18 Final wR2 = 0.141 and
R1 = 0.10018 for all 5106 reflections weighted w = [s2(Fo2) +
Notes and references
1 S. Chandrasekhar, B. K. Sadashiva and K. A. Suresh, Pramana,
1977, 9, 471.
(0.0239P)2 + 5.09P]À1 with P = (Fo + 2Fc2)/3; for ‘observed’
2
2 (a) S. Sergeyev, W. Pisula and Y. H. Geerts, Chem. Soc. Rev., 2007,
36, 1902; (b) S. Laschat, A. Baro, N. Steinke, F. Giesselmann,
C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer,
A. Schreivogel and M. Tosoni, Angew. Chem., Int. Ed., 2007, 46,
4832.
data only, R1 = 0.066. In final difference map, highest peak
ca. 0.22 eAÀ3
16 Z. Otwinowski and W. Minor, Processing of X-ray diffraction data
collected in oscillation mode, Methods Enzymol., 1997, 276,
307–326.
.
3 (a) S. Kumar, Liq. Cryst., 2004, 31, 1037–1059; (b) S. Kumar, Liq.
Cryst., 2005, 32, 1089.
4 (a) R. Freudenmann, B. Behnisch and M. Hanack, J. Mater.
Chem., 2001, 11, 1618; (b) I. Seguy, P. Destruel and H. Bock,
Synth. Met., 2000, 111, 15; (c) L. Schmidt-Mende,
17 G. M. Sheldrick, SADABS—Program for calculation of absorption
corrections for area-detector systems, version 2007/2, Bruker AXS Inc.,
Madison, Wisconsin, USA, 2007.
18 G. M. Sheldrick, SHELX-97—Programs for crystal structure
determination (SHELXS) and refinement (SHELXL), Acta
Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend and
¨
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4255–4257 | 4257