598
M. Ioannidis et al. / Inorganic Chemistry Communications 13 (2010) 593–598
(b) P.D. Zalewski, S.H. Millard, I.J. Forbes, O. Kapaniris, A. Slavotinek, W.H. Betts,
[11] J.D. Lamb, R.M. Izatt, C.S. Swain, J.J. Christensen, J. Am. Chem. Soc. 102 (1980) 475.
[12] F. Arnaud-Neu, R. Delgado, S. Chaves, Pure Appl. Chem. 75 (2003) 71.
[13] Selected details of data collection and structure refinement for compound
[Na(1)(H2O)]2(ClO4)2: Formula C22H31ClN3NaO11S, monoclinic, space group P21/n,
Mr 604.00, orange rod, 0.30×0.10×0.10 mm, a=10.202(3), b=25.310(7),
A.D. Ward, S.F. Lincoln, I. Mahadevan, J. Histochem. Cytochem. 42 (1994)
877;
(c) K.M. Hendrickson, T. Rodopoulos, P.-A. Pittet, I. Mahadevan, S.F. Lincoln, D.A.
Ward, T. Kurucsev, P.A. Duckworth, I.J. Forbes, P.D. Zalewski, W.H. Betts, J. Chem.
Soc. Dalton Trans. (1997) 3879;
(d) M.C. Kimber, I.B. Mahadevan, S.F. Lincoln, A.D. Ward, E.R.T. Tiekink, J. Org.
Chem. 65 (2000) 8204;
(e) K.M. Hendrickson, J.P. Geue, O. Wyness, S.F. Lincoln, A.D. Ward, J. Am. Chem.
Soc. 125 (2003) 3889;
c=10.439(3) Å, β=96.411(4), V=2678.7(12) Å3, Z=4, Dcalcd=1.498 g cm-3
,
μ=0.301 cm-1, 2θ=55° data collected 20598, unique data 6089 (Rint=0.031), obs.
data [IN2σ(I)] 5048, no. parameters 353, no. restraints 2, R1 0.0355 (obs. data), wR2
0.0846 (all data), GOF 1.045. The coordinated water molecule in the structure was
modeled as being disordered over two sites (O33, 80%; O34, 20%).
(f) J.P. Geue, N.J. Head, A.D. Ward, S.F. Lincoln, Dalton Trans. (2003) 521.
[7] S.J. Isak, E.M. Eyring, J.D. Spikes, P.A. Meekins, J. Photochem. Photobiol. A: Chem
134 (2000) 77.
[14] Geometry optimisations and harmonic vibrational frequency calculations were
performed using the ab-initio Hartree–Fock (HF) method and the B3LYP density
functional in the Gaussian '03 suite of programs.[16] The harmonic vibrational
frequency calculations were performed to ensure that the optimised structures
were indeed true minima (0 imaginary frequencies). All atoms were treated with
the split-valence double-zeta 6–31 g Pople-type basis set. Calculations involving
the addition of diffuse and polarisation functions to this basis set were also
performed on the E and Z-Isomers of compound [Na(1)]+, but were found to yield
very similar results to the 6–31 g basis set. Due to this and the large increase in
calculation time upon the addition of these functions to the basis set, further
calculations were performed with the standard 6–31 g basis set.
[15] M.J. Frisch, G.W.T., H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, H.N.G.A. Petersson,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C.
Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi,
C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J.
Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K.
Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul,
S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, et al., Gaussian 03, Gaussian, Inc, Pittsburgh PA, 2003.
[8] Selected details of data collection and structure refinement for compound 1:
Formula C22H29N3O6S, monoclinic, space group P21/n, Mr 463.54, orange rod,
0.88×0.16×0.16 mm, a=10.916(2), b=9.564(1), c=22.350(3) Å, β=101.314(6),
V=2288.1(5) Å3, Z=4, Dcalcd=1.346 g cm-3, μ=0.185 cm-1, θ range=2.86–27.00°
data collected 22268, unique data 4970 (Rint =0.032), obs. data [IN2σ(I)] 4425, no.
parameters 308, no. restraints 2, R1 0.0460 (obs. data), wR2 0.1097 (all data), GOF
1.047. The azo moiety of the structure is disordered with another E form of the
structure present in the crystal (major component 68%; minor component 32%). The
two restraints are used to maintain appropriate distances for the minor disorder
component.
[9] (a) C.F. Martens, A.P.H.J. Schenning, M.C. Feiters, R.J.M. Nolte, G. Beurskens, P.T.
Beurskens, Inorg. Chim. Acta 190 (1991) 163;
(b) C.F. Martens, A.P.H.J. Schenning, M.C. Feiters, G. Beurskens, J.M.M. Smits, P.T.
Beurskens, W.J.J. Smeets, A.L. Spek, R.J.M. Nolte, Supramol. Chem. 8 (1996) 31;
(c) K. Kirschke, H. Baumann, B. Costisella, M. Ramm, Liebigs Ann. Chem. (1994)877;
(d) V.W.-W. Yam, K.M.-C. Wong, V.W.-M. Lee, K.K.-W. Lo, K.-K. Cheung,
Organometallics 14 (1995) 4034;
(e) E.S. Meadows, L.J. Barbour, R. Ferdani, G.W. Gokel, J. Supramol. Chem. 1
(2001) 111.
[10] Caution! Whilst no problems were encountered in the course of this work,
perchlorate salts are strong oxidising agents and are potentially explosive and
should be handled on a small scale with appropriate care.