In this paper, we report on a new approach to the
stereocontrolled synthesis of 2,8-dialkyl oxocanes 1 through
the parent 5,8-dihydro-2H-oxocine 2, taking advantage of
the chemical and structural properties induced by the
formation of Co2(CO)6 complexes in propargylic systems
(Scheme 2).5 We envisioned the synthesis of these hetero-
methodology based on the trapping of propargylic cations
using alcohols as nucleophiles.7 Initial work using (S)-non-
1-en-3-ol10 (7, R2 ) C6H13-n) (Scheme 3)11 as the incoming
Scheme 3. Preparation of (S)-Non-1-en-3-ol from
(2S,3S)-2,3-Epoxy-1-nonanol
Scheme 2. Retrosynthetic Analysis for the Stereoselective
Synthesis of 2,8-Dialkyl Oxocanes
alcohol over the cobalt complex of racemic oct-7-en-4-yn-
3-ol12 was fruitless yielding a complex mixture, presumably
by internal participation of the double bond of the enyne
substrate. Trying to overcome this difficulty, we turned our
attention on the cobalt complex of commercially available
racemic 1-pentyn-3-ol (6, R1 ) C2H5) relying the allylation
process for a latter step in the synthesis. However, when
applying the reported conditions7 yield and conversion to
the desired linear ether 5 were again scarce. Trying to
improve the conditions, we thoroughly examined many
experimental variables such as temperature, rate and order
of addition of reagents, amount of Lewis acid and concentra-
tion. As a result of this study, we found that the best
conditions needed relative high concentration (0.2 M), 2
equiv of Lewis acid and slow addition of the secondary
alcohol (Scheme 4).12 Although at this point of the synthesis
cycles through the Co2(CO)6-cycloalkynic ether 3 that could
be synthesized from the unsaturated alkyne-cobalt 4 by
means of a RCM.6 This precursor could be unveiled upon
allylation of alkyne 5. Finally, this propargylic ether, having
two stereogenic centers close to the oxygen, was disas-
sembled to the complexed propargylic alcohols 6 and the
secondary allylic alcohol 7 through an intermolecular
Nicholas reaction.7 The power of the developed methodology
is exemplified in the synthesis of (+)-cis-lauthisan (1, R1 )
C2H5, R2 ) C6H13-n).8,9
The synthesis of the cobalt-complexed ether 4 (R1 ) C2H5,
R2 ) C6H13-n) was initiated applying our previously reported
Scheme 4. Direct Preparation of Linear Ethers Having the
(3) For representative examples, see: (a) Hirama, M. Oishi, T.; Uehara,
H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Science 2001, 294,
1904-1907. (b) Crimmins, M. T.; She, J. J. Am. Chem. Soc. 2004, 126,
12790-12791. (c) Clark, J. S.; Kimber, M. C.; Robertson, J.; McErlean,
C. S. P.; Wilson, C. Angew. Chem., Int. Ed. 2005, 44, 6157-6162.
(4) (a) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121,
5653-5660. (b) Rhee, H. J.; Beom, H. Y.; Kim, H.-D. Tetrahedron Lett.
2004, 45, 8019-8022. (c) Denmark, S. E.; Yang S.-M. J. Am. Chem. Soc.
2004, 126, 12432-12440.
Linkage between Two Stereogenic Secondary Carbons
(5) For the synthesis of cyclic ethers by intramolecular Nicholas reactions,
see: (a) Mukai, C.; Yamaguchi, S.; Sugimoto, Y.; Miyakoshi, N.;
Kasamatsu, E.; Hanaoka, M J. Org. Chem. 2000, 65, 6761-6765 and
references therein. (b) Kira, K.; Tanda, H.; Hamajima, A.; Baba, T.; Takai,
S.; Isobe, M. Tetrahedron 2002, 58, 6485-6492 and references therein.
(c) Betancort, J. M.; Mart´ın, T.; Palazo´n, J. M.; Mart´ın, V. S. J. Org. Chem.
2003, 68, 3216-3224.
(6) (a) Green, J. R. Synlett 2001, 353-356. (b) Young, D. G. J.; Burlison,
J. A.; Peters, U. J. Org. Chem. 2003, 68, 3494-3497. (c) Yang, Z.-Q.;
Geng, X.; Solit, D.; Pratilas, C. A.; Rosen, N.; Danishefsky, S. J. J. Am.
Chem. Soc. 2004, 126, 7881-7889.
it was very difficult to ensure the stereoselection of the newly
created stereocenter in compound 5, more elaborated frag-
ments in the synthesis (vide infra) showed us a ratio of
approximately 1:1.7 of both diastereoisomers in favor of the
undesired stereoisomer.
With the ether 5 in hand, the preparation of the necessary
diene for the RCM step requires only a simple alkylation.
To this end, copper-catalyzed homologation of 5 with allyl
bromide provided the dienyl derivative 8 in excellent yield.
To overcome the unfavorable entropic and enthalpic factors
involved in the formation of the eight membered ring (the
final ring has an endocyclic triple bond) we decided to take
advantage of the bending in the acetylenic system when
(7) D´ıaz, D. D.; Mart´ın, V. S. Tetrahedron Lett. 2000, 41, 9993-9996.
(8) (a) Blunt, J. W.; Lake, R. J.; Munro, M. H. G.; Yorke, S. C. Aust. J.
Chem. 1981, 34, 2393-2400. (b) Fukazawa, A. Masamune, T. Tetrahedron
Lett. 1981, 22, 4081-4084.
(9) For a previously reported synthesis of lauthisan, see: (a) Reference
4b. (b) Carling, R. W.; Holmes, A. B. J. Chem. Soc., Chem. Commun. 1986,
565-567. (c) Kotsuki, H.; Ushio, Y.; Kadota, I.; Ochi, M. J. Org. Chem.
1989, 54, 5153-5161. Tsushima, K.; Murai, A. Chem. Lett. 1990, 761-
764. (d) Nicolaou, K. C.; McGarry, D. G.; Somers, P. K.; Kim, B. H.;
Ogilvie, W. W.; Yiannikouros, G.; Prasad, C. V. C.; Veale, C. A.; Hark,
R. R. J. Am. Chem. Soc. 1990, 112, 6263-6276. (e) Paquette, L. A.;
Sweeney, T. J. J. Org. Chem. 1990, 55, 1703-1704. (f) Udding, J. U.;
Giesselink, J. P. M.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1994,
59, 6671-6682. (g) Kim, H.; Ziani-Cherif, C.; Oh, J.; Cha, J. K. J. Org.
Chem. 1995, 60, 792-793. (h) Suh, Y.-G.; Koo, B.-A.; Kim, E.-N.; Choi,
N.-S. Tetrahedron Lett. 1995, 36, 2089-2092. (i) Coster, M. J.; De Voss,
J. J. Org. Lett. 2002, 4, 3047-3050. (j) Carren˜o, M. C.; Des Mazery, R.;
Urbano, A.; Colobert, F.; Solladie, G. Org. Lett. 2005, 7, 2039-2042.
(10) Mart´ın, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.;
Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237-6240.
(11) Yadav, J. S.; Shekharam, T.; Gadgil, V. R. J. Chem. Soc., Chem.
Commun., 1990, 843.
(12) See the Supporting Information for experimental details.
872
Org. Lett., Vol. 8, No. 5, 2006