10.1002/ejoc.201701351
European Journal of Organic Chemistry
FULL PAPER
(S)-1-Phenyl-2-butanol [(S)-2j]: 1H NMR (CDCl3): δ = 1.01 (t, J = 7.3 Hz,
3 H), 1.49-1.60 (m, 3 H), 2.60 (dd, J = 13.5, 8.4 Hz, 1 H), 2.85 (dd, J = 13.5,
4.3 Hz, 1 H), 3.71-3.78 (m, 1 H), 7.21–7.63 (m, 5 H) ppm. 13C NMR
(CDCl3): δ = 10.0, 29.6, 43.6, 74.0, 126.4, 128.5, 129.4, 138.6 ppm.1H and
13C NMR data were in accordance with those previously reported.[35]
Seisser, K. Faber, S. F. Mayer, R. Oehlein, A. Hafner, W. Kroutil, Eur. J.
Org. Chem. 2006, 1904–1909.
[6]
[7]
D. Zhu, Y. Yang, L. Hua, J. Org. Chem. 2007, 71, 4202–4205.
H. Gröger, F. Chamouleau, N. Orologas, C. Rollman, K. Drauz, W.
Haummel, A. Weckbecker, O. May, Angew. Chem. Int. Ed. 2006, 45,
5677–5681; Angew. Chem. 2006, 118, 5806-5809.
(R)-1-Phenyl-2-pentanol [(R)-2k]: [훼]2퐷1 –1.01° (c 0.015, EtOH) 98 % ee,
lit.[39] [훼]퐷20 +3.7° (c 1.1, EtOH), 99% ee for S isomer. 1H NMR (CDCl3): δ =
0.94 (t, J = 7.0 Hz, 3 H), 1.41–1.55 (m, 4 H), 2.65 (dd, J = 13.6 Hz, 8.5 Hz,
1 H), 2.83 (dd, J = 13.6 Hz, 4.0 Hz, 1 H), 3.67 (br s, OH), 3.81-3.86 (m,
1H), 7.21-7.35 (m, 5H) ppm.13C NMR (CDCl3): δ = 14.0, 18.9, 39.1, 44.1,
72.4, 126.4, 128.5, 129.4, 138.6 ppm. 1H and 13C NMR data were in
accordance with those previously reported.[40]
[8]
[9]
J. Grunwald, B. Wirz, M. P. Scollar, A. M. Klibanov J. Am. Chem. Soc.
1986, 108, 6734–6739.
O. Bsharat, M. M. Musa, C. Vieille, S. A. Oladepo, M. Takahashi, S. M.
Hamdan, ChemCatChem 2017, 9, 1487-1493.
[10] a) C. Heiss, R. S. Phillips, J. Chem. Soc., Perkin Trans. 2000, 1, 2821–
2825; b) C. Heiss, M. Laivenieks, J. G. Zeikus, R. S. Phillips Biorg. Med.
Chem. 2001, 9, 1659–1666.
[11] E. Keinan, E. Hafeli, K. K. Seth, R. Lamed, J. Am. Chem.Soc. 1986, 108,
162–169.
(R)-1-Phenyl-1-ethanol [(R)-2l]:1H NMR (CDCl3): δ = 1.47 (d, J = 6.4 Hz,
3 H), 2.2 (br s, 2 H), 4.86 (q, J = 6.4, 1H), 7.25-7.36 (m, 5 H). 13C NMR
(CDCl3): δ = 25.1, 70.3, 125.3, 127.4, 128.4, 145.7. 1H and 13C NMR data
were in accordance with those previously reported.[33]
[12] a) D. Burdette, J. G. Zeikus, Biochem. J. 1994, 302, 163–170; b) D.
Burdette, C. Vieille, J. G. Zeikus, Biochem. J. 1996, 316, 115–122; c) V.
T. Pham, R. S. Phillips, J. Am. Chem. Soc. 1990, 112, 3629–3632.
[13] C. M. Nealon, M. M. Musa, J. M. Patel, R. S. Phillips, ACS Catal. 2015,
5, 2100–2114.
(R)-1,2-Diphenylethanol [(R)-2m]: [훼]2퐷4 +7.4° (c 0.016, CHCl3) 95 % ee,
lit.[41] [훼]퐷22 –13.0 (c 1.05, CHCl3), 90% ee for S isomer. 1H NMR (CDCl3):
δ = 1.93 (br s, 1 H), 2.99 (dd, J =13.7, 8.6 Hz, 1 H), 3.05 (dd, J = 13.6, 4.6
Hz, 1 H), 4.88–4.92 (m, 1 H), 7.19–7.37 (m, 10 H) ppm. 13C NMR (CDCl3):
δ = 46.1, 75.3, 125.9, 126.6, 127.6, 128.4, 128.5, 129.5, 138.0, 143.8 ppm.
1H and 13C NMR data were in accordance with those previously
reported.[41,42]
[14] a) J. M. Patel, M. M. Musa, L. Rodriguez, D. A. Sutton, V. Popik, R. S.
Phillips, Org. Biomol. Chem. 2014, 12, 5905–5910; b) M. M. Musa, K. I.
Ziegelmann-Fjeld, C. Vieille, J. G. Zeikus, R. S. Phillips, J. Org. Chem.
2007, 72, 30–34; c) K. I. Ziegelmann-Fjeld, M. M. Musa, R. S. Phillips, J.
G. Zeikus, C. Vieille, Protein Eng. Des. Sel. 2007, 20, 47–55.
[15] V. Prelog, Pure Appl. Chem. 1964, 9, 119–130.
[16] M. M. Musa, N. Lott, M. Laivenieks, L. Watanabe, C. Vieille, R. S. Phillips,
ChemCatChem 2009, 1, 89–93.
(R)-2-Hydroxy-1-phenyl-1-propanone [(R)-2n]: [훼]2퐷1 –4.8° (c 0.0075,
CHCl3) >99 % ee, lit.[43] [훼]퐷20 –67.0 (c 0.4, CHCl3), >99% ee for R isomer.
1H NMR (CDCl3): δ = 1.46 (d, J = 7.0 Hz, 3 H), 3.7 (s, 1 H), 5.17 (q, J = 7.6
Hz, 1 H), 7.48–7.53 (m, 2 H), 7.62–7.65 (m, 1 H), 7.92–7.95 (m, 2 H) ppm.
13C NMR (CDCl3): δ = 22.3, 69.3, 128.7, 128.9, 133.4, 134.0, 202.4 ppm.
1H and 13C NMR data were in accordance with those previously
reported.[44]
[17] a) G. R. Petit, S. B. Singh and G. M. Cragg, J. Org. Chem. 1985, 50,
3404–3406; b) A. Ramacciotti, R. Fiaschi, E. Napolitano, Tetrahedron:
Asymmetry 1996, 7, 1101–1104.
[18] a) F. Li, J. Cui, X. Qian, W. Ren, X. Wang, Chem. Commun. 2006, 865–
867; b) C. Hiraoka, M. Matsuda, Y. Suzuki, S. Fujieda, M. Tomita, K.
Fuhshuku, R. Obata, S. Nishiyama, T. Sugai, Tetrahedron: Asymmetry
2006, 17, 3358–3367.
[19] a) S. Roy, V. Alexandre, M. Neuwels, L. Le Texier, Adv. Synth. Catal.
2001, 343, 738–743; b) D. Zhu, L. Hua, J. Org. Chem. 2006, 71, 9484–
9486; c) M. D. Truppo, D. Pollard, P. Devine, Org. Lett. 2007, 9, 335–
338; d) R. R. Manam, V. R. Macherla, B. C. M. Potts, Tetrahedron Lett.
2007, 48, 2537–2540; e) H. Li, D. Zhu, L. Hua, E. R. Biehl, Adv. Synth.
Catal. 2009, 351, 583–588; f) J. Liang, J. Lalonde, B. Borup, V. Mitchell,
E. Mundorff, N. Trinh, D. A. Kochrekar, R. N. Cherat, G. G. Pai, Org.
Process Res. Dev. 2010, 14, 193–198.
Acknowledgements
The authors acknowledge the support provided by the Deanship
of Scientific Research (DSR) at King Fahd University of Petroleum
and Minerals (KFUPM) for funding this work under project number
IN151032. They also acknowledge the supported by baseline
research fund to S.M.H. by King Abdullah University of Science
and Technology.
[20] Reaction conditions used in ref. 14b for asymmetric reductions of 1a, 1b,
1d, and 1f: 0.34 mmol substrate, 2.0 mg NADP+, 0.75 mg W110A
TeSADH, 7.0 mL Tris-HCl (50 mM, pH 8.0), and 3.0 mL 2-propanol.
Reaction conditions used in ref. 14a for asymmetric reductions of 1a and
1f: 0.04 mmol ketone, 1.0 mg NADP+, 0.35 mg mutant TeSADH, 9.5 mL
Tris-HCl (50 mM, pH 8.0), and 0.5 mL 2-propanol.
Keywords: active site • alcohol dehydrogenases • asymmetric
reduction • site-directed mutagenesis • substrate specificity
[21] N. Shibata, T. Katoh, S. Terashima, Tetrahedron lett. 1997, 38, 619–620.
[22] T. Fujita, Phytochemistry 1995, 39, 1085–1089.
[23] Y. Yuasa, S. Shibuya, Y. Yuasa, Synth. Commun. 2003, 33, 1469–1475.
[24] K. Matsumura, S. Hashigushi, T. Ikariya, R. Noyori, J. Am. Chem. Soc.
1997, 119, 8738–8739.
[1]
[2]
[3]
U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C.
Moore, K. Robins, Nature 2012, 485, 185–194.
K. Faber, Biotransformations in organic chemistry, 6th ed., Springer
[25] Z. Zhang, P. Jain, J. C. Antilla, Angew. Chem. Int. Ed. 2011, 50, 10961–
10964; Angew. Chem. 2011, 123, 11153-11156.
Verlag, New York, 2011.
a) Y. Ni, J. Xu, Biotechnol. Adv. 2012, 30, 1279–1288; b) L. Wang, C. Li,
Y. Ni, J. Zhang, X. Liu, J. Xu, Bioresour. Technol. 2011, 102, 7023–7028;
c) G. W. Huisman, J. Liang, A. Krebber, Curr. Opin. Chem. Biol. 2010,
14, 122–129; d) G. A. Strohmeier, H. Pichler, O. May, M. Gruber-
Khadjawi, Chem. Rev. 2011, 111, 4141–4164.
[26] a) I. L. Schmitke, L. J. Stern, A. M. Klibanov, Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 12918–12923; b) C. Heiss, M. Laivenieks, J. G. Zeikus, R. S.
Phillips, J. Am. Chem. Soc. 2001, 123, 345–346.
[27] I. Karume, M. Takahashi, S. M. Hamdan, M. M. Musa, ChemCatChem
2016, 8, 1458–1463.
[4]
[5]
R. Agudo, G.-D. Roiban, M. T. Reetz, J. Am. Chem. Soc. 2013, 135,
1665–1668.
[28] Acetophenone and its derivatives are not substrates for W110 single
mutants of TeSADH. We coud not explain the absence of activity of the
W110 single mutants on acetophenone with computational docking
a) I. Lavandera, G. Oberdorver, J. Gross, S. De Wildeman, W. Kroutil,
Eur. J. Org. Chem. 2008, 2539–2543; b) K. Edegger, W. Stampfer, B.
This article is protected by copyright. All rights reserved.