Journal of the American Chemical Society
Page 4 of 5
(3) For a review: (a) Ishibashi, H.; Ishihara, K.; Yamamoto, H.
Chem. Rec. 2002, 2, 177. (b) Yamamoto, H.; Futatsugi, K. Angew.
Chem. Int. Ed. 2005, 44, 1924.
(R)-1a coordinates to BBr3 and the C=O moiety of 3b
coordinates to the proton of phosphoric acid (see the SI).
Moreover, two hydrogen bonds for 3b, such as Br···H–
C=O and Br···H–C=C, were observed. These hydrogen
bonding interactions show that the base function of the
LBA shifts from the original P=O moiety to the terminal
Br moiety, and thus the BBr3–(R)-1a complex would
also act as an acid–base cooperative catalyst.
1
2
3
4
5
6
7
8
(4) (a) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. (b) Du,
H.; Ding, K. in Handbook of Cyclization Reactions, ed. Ma, S. Wiley-
VCH, Stuttgart, 2010, pp. 1–57; (c) Ishihara K.; Sakakura, A. in Sci-
ence of Synthesis, Stereoselective Synthesis, ed. Evans, P. A. Thieme,
Weinheim, 2011, vol. 3, pp. 67–123.
(5) Excess BBr3 might act as the dimer (BBr3)2, which has stronger
Lewis acidity than BBr3. Also see the SI in detail. Schmulbach, C.
D.; Ahmed, I. Y. J. Mol. Struct. 1994, 320, 57.
9
(6) BBr3–(R)-1b did not always give better results than BBr3–(R)-
1a. For example, BBr3–(R)-1b was not suitable for reactive acroleins
and cyclic dienes, as shown in Table 1 and Schemes 2 and 3.
(7) Yamamoto reported a preference of Brønsted acid catalysts
over bulky Lewis acids in the coordination to sterically hindered ke-
tones, unlike aldehydes. In this regard, a preference of Brønsted acid
catalysts for esters might be possible. Nakashima, D.; Yamamoto, H.
Org. Lett. 2005, 7, 1251.
(8) Catalytic enantioselective Diels–Alder reactions of 1,2-
dihydropyridines. (a) Takenaka, N.; Huang, Y.; Rawal, V. H. Tetrahe-
dron 2002, 58, 8299. (b) Nakano, H.; Tsugawa, N.; Fujita, R. Tetrahe-
dron Lett. 2005, 46, 5677. (c) Nakano, H.; Osone, K.; Takeshita, M.;
Kwon, E.; Seki, C.; Matsuyama, H.; Takano, N.; Kohari, Y. Chem.
Commun. 2010, 46, 4827. (d) Suttibut, C.; Kohari, Y.; Igarashi, K.;
Nakano, H.; Hirama, M.; Seki, C.; Matsuyama, H.; Uwai, K.; Takano,
N.; Okuyama, Y.; Osone, K.; Takeshita, M.; Kwon, E. Tetrahedron Lett.
2011, 52, 4745. (e) Ishihara, K.; Yamada, H.; Akakura, M. Chem.
Commun. 2014, 50, 6357. (f) Kohari, Y.; Okuyama, Y.; Kwon, E.;
Furuyama, T.; Kobayashi, N.; Otuki, T.; Kumagai, J.; Seki, C.; Uwai,
K.; Dai, G.; Iwasa, T.; Nakano, H. J. Org. Chem. 2014, 79, 9500.
(9) Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.;
Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai,
C. Y.; Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681.
(10) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew.
Chem. Int. Ed. 2007, 46, 5734.
(11) Total synthesis of indole alkaloids via Diels–Alder reactions
of 1,2-dihydropyridines. (a) Büchi, G.; Coffen, D. L.; Kocsis, K.;
Sonnet, P. E.; Ziegler, F. E. J. Am. Chem. Soc. 1965, 87, 2073. (b)
Büchi, G.; Coffen, D. L.; Kocsis, K.; Sonnet, P. E.; Ziegler, F. E. J.
Am. Chem. Soc. 1966, 88, 3099. (c) Ikezaki, M.; Wakamatsu, T.; Ban,
Y. J. Chem. Soc., Chem. Commun. 1969, 88. (d) Büchi, G.; Kulsa, P.;
Ogasawara, K.; Rosati, R. L. J. Am. Chem. Soc. 1970, 92, 999. (e)
Marazano, C.; Le Goff, M.-T.; Fourrey, J.-L.; Das, B. C. J. Chem.
Soc., Chem. Commun. 1981, 389. (f) Raucher, S.; Bray, B. L. J. Org.
Chem. 1985, 50, 3236. (g) Kuehne, M. E.; Bornmann, W. G.; Earley,
W. G.; Marko, I. J. Org. Chem. 1986, 51, 2913. (h) Raucher, S.; Bray,
B. L.; Lawrence, R. F. J. Am. Chem. Soc. 1987, 109, 442. (i) Born-
mann, W. G.; Kuehne, M. E. J. Org. Chem. 1992, 57, 1752. (j) Red-
ing, M. T.; Fukuyama, T. Org. Lett. 1999, 1, 973. (k) Mizoguchi, H.;
Oikawa, H.; Oguri, H. Nature Chem. 2014, 6, 57.
Figure 1. B3LYP/6-31G*-Optimized Geometry of BBr3–
(R)-1a–3b Complex
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
n
re face
(favored)
Br
B
2.92 Å
2.72 Å
H
P
H
H
si face
(disfavored)
In summary, we have developed BBr3-assisted chiral
phosphoric acids as highly effective LBA catalysts. In
particular, the enantioselective Diels–Alder reactions of
α-substituted acroleins with 1,2-dihydropyridines pro-
ceeded, and synthetically useful optically active inter-
mediates for bioactive indole alkaloids were obtained.
ASSOCIATED CONTENT
Experimental procedures and characterization data. This
material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
Funding Sources
The authors declare no competing financial interest.
(12) Moisan, L.; Thuéry, P.; Nicolas, M.; Doris, E.; Rousseau, B.
Angew. Chem. Int. Ed. 2006, 45, 5334.
ACKNOWLEDGMENT
(13) (a) Brown, R. T.; Hill, J. S.; Smith, G. F.; Stapleford, K. S. .; Pois-
son, J.; Muquet, M.; Kunesch, N. J. Chem. Soc., Chem. Commun. 1969,
1475. (b) Scott, A. I.; Wei, C. C. J. Am. Chem. Soc. 1972, 72, 8266. (c)
Scott, A. I.; Cherry, P. C.; Wei, C. C. Tetrahedron 1974, 30, 3013.
(14) Szántay, C.; Bölcskei, H.; Gács-Baitz, E. Tetrahedron 1990,
46, 1711.
(15) Mukaiyama reported prolinol–BBr3-catalysed Diels–Alder re-
action, in which the active catalyst prepared in situ at room tempera-
ture was believed to be the exchanged-HBr salt of amino boron deriv-
atives. Later, Aggawal showed structural evidence by NMR study.
(a) Kobayashi, S.; Murakami, M.; Harada, T.; Mukaiyama, T. Chem.
Lett. 1991, 20, 1341. (b) Aggarwal, V. K.; Anderson, E.; Giles, R.;
Zaparucha, A. Tetrahedron: Asymmetry 1995, 6, 1301.
Financial support was partially provided by JSPS KA-
KENHI Grant Numbers 15H05755, 26288046, and
26105723, and Program for Leading Graduate Schools
“IGER program in Green Natural Sciences”, MEXT, Japan.
REFERENCES
(1) For reviews: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b)
Terada, M. Synthesis 2010, 1929. (c) Parmar, D.; Sugiono, E.; Raja,
S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
(2) (a) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128,
9626. (b) Čorić, I.; List, B. Nature 2012, 483, 315. (c) van Gemmeren,
M.; Lay, F.; List, B. Aldrichimica Acta 2014, 47, 3. (d) Schenker, S.;
Zamfir, A.; Freund, M.; Tsogoeva, S. B. Eur. J. Org. Chem. 2011,
2209. (e) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev.
2011, 40, 4539. (f) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.;
Atodiresei, I. Angew. Chem. Int. Ed. 2011, 50, 6706.
(16) Tanner, D. D.; Zhang, L.; Hu, L. Q.; Kandanarachchi, P. J.
Org. Chem. 1996, 61, 6818.
(17) (a) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem. Eur. J.
2010, 16, 9350. (b) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nature
Chem. 2012, 4, 603. (c) Lv, J.; Luo, S. Chem. Commun. 2013, 49, 847.
ACS Paragon Plus Environment