798
K.O. Christe et al. / Journal of Fluorine Chemistry 131 (2010) 791–799
[5] R. Damerius, P. Huppmann, D. Lentz, K. Seppelt, J. Chem. Soc., Dalton Trans. (1984)
2821–2826.
[6] A.R. Mahjoub, D. Leopold, K. Seppelt, Z. Anorg. Allg. Chem. 618 (1992) 83–88.
[7] K.O. Christe, E.C. Curtis, C.J. Schack, D. Pilipovich, Inorg. Chem. 11 (1972) 1679–
1682.
[8] A.R. Mahjoub, X. Zhang, K. Seppelt, Chem. Eur. J. 1 (1995) 261–265.
[9] K.H. Moock, R.T. Boere, J. Fluorine Chem. 68 (1994) 175–179.
[10] I.C. Bowater, R.D. Brown, F.R. Burden, J. Mol. Spectrosc. 23 (1967) 272–279.
[11] R. Paetzold, K. Aurich, Z. Anorg. Allg. Chem. 315 (1962) 72–78.
[12] J.A. Rolfe, L.A. Woodward, Trans. Faraday Soc. 51 (1955) 778–780.
[13] E.B.R. Prideaux, C.B. Cox, J. Chem. Soc. (1928) 739–745.
[14] E.B.R. Prideaux, C.B. Cox, J. Chem. Soc. (1927) 928–929.
[15] C. Feldmann, M. Jansen, Chem. Ber. 127 (1994) 2173–2176.
[16] J. Milne, Inorg. Chem. 17 (1978) 3592–3595.
and the 2s and 2p electrons in O and F were correlated in the
valence electron correlation calculations. The ZORA NMR calcula-
tions [40–45] were done, as described above, with the ADF code
[39] at the B3LYP/aVTZ-PP geometries. NMR calculations were also
done with the B3LYP and BLYP [36,38] functionals with the aug-cc-
pVDZ and Ahlrichs TZ2P [37] basis sets.
The heat of formation calculations were done at the CCSD(T)
level. For the open shell atomic calculations, we used the R/
UCCSD(T) (restricted method for the starting Hartree–Fock
wavefunction and then relaxed the spin restriction in the coupled
cluster portion of the calculation) approach [82]. The CCSD(T)/aug-
cc-pVnZ valence energies were extrapolated to the complete basis
set (CBS) limit by using a mixed exponential/Gaussian function of
the form [83]:
[17] E.J. Baran, J. Fluorine Chem. 10 (1977) 255–259.
[18] R.J. Gillespie, P. Spekkens, J.B. Milne, D. Moffett, J. Fluorine Chem. 7 (1976) 43–54.
[19] R. Paetzold, K. Aurich, Z. Anorg. Allg. Chem. 335 (1965) 281–288.
[20] J. Milne, P. Lahaie, Inorg. Chem. 22 (1983) 2425–2428.
[21] R. Paetzold, K. Aurich, Z. Anorg. Allg. Chem. 348 (1966) 94–106.
[22] R. Paetzold, K. Aurich, Z. Chem. 6 (1966) 152–153.
[23] A. Kornath, D. Kadzimirsz, R. Ludwig, Inorg. Chem. 38 (1999) 3066–3069.
[24] U. Kessler, M. Jansen, Z. Anorg. Allg. Chem. 627 (2001) 1782–1786.
[25] T.M. Klapo¨tke, B. Krumm, P. Mayer, I. Schwab, Acta Crystallogr. E 61 (2005)
o2984–o2986.
[26] L. Wang, Int. J. Mass Spectrom. 264 (2007) 84–91.
[27] M. Atanasov, D. Reinen, Inorg. Chem. 43 (2004) 1998–2012.
[28] Q. Li, W. Xu, Y. Xie, H.F. Schaefer III, J. Phys. Chem. A 103 (1999) 7496–7505.
[29] M. Alexandre, P. Rigny, Can. J. Chem. 52 (1974) 3676–3681.
[30] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251–8260.
[31] C. Adamo, V. Barone, J. Chem. Phys. 108 (1998) 664–675.
[32] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1991) 13244.
[33] (a) T.H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007–1023;
(b) R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96 (1992) 6796–
6806;
2
EðnÞ ¼ ECBS þ Beꢀðnꢀ1Þ þ Ceꢀðnꢀ1Þ
(1)
with n = 2 (aug-cc-pVDZ), 3 (aug-cc-pVTZ), 4 (aug-cc-pVQZ).
Core-valence corrections, ECV, were obtained as the difference
D
between frozen-core and all-electrons correlated calculations at
the CCSD(T)/cc-pwCVTZ-PP level [84]. A scalar relativistic correc-
tion,
DESR, due to the F and O atoms was evaluated from the
expectation values for the two dominant terms in the Breit–Pauli
Hamiltonian (the mass-velocity and one-electron Darwin (MVD)
corrections) [85] from configuration interaction singles and
doubles (CISD) calculations with a VTZ basis set at the CCSD(T)/
aug-cc-pVTZ geometry. Any ‘‘double counting’’ of the relativistic
effect on the Se when applying a MVD correction to an energy,
which already includes most of the relativistic effects via the RECP,
is small. A second relativistic correction is due to atomic spin orbit
effects and the values are 0.22 kcal/mol for O, 0.39 for F and
2.70 kcal/mol for Se were taken from the excitation energies
(c) D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98 (1993) 1358–1371;
(d) T.H. Dunning Jr., K.A. Peterson, A.K. Wilson, J. Chem. Phys. 114 (2001) 9244–
9253;
(e) A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning Jr., J. Chem. Phys 110
(1999) 7667–7676.
[34] (a) K.A. Peterson, J. Chem. Phys. 119 (2003) 11099–11112;
(b) K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 119 (2003)
11113–11123.
[35] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
compiled by Moore [86]. By combining our computed
given by the following expression:
S
D0 values
[36] C. Lee, C.W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
[37] A. Scha¨fer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97 (1992) 2571–2577.
[38] A.D. Becke, Phys. Rev. A 38 (1988) 3098–3100.
[39] (a) ADF 2004.01, ADF Users Guide, SCM, Theoretical Chemistry, Vrije Universiteit,
(b) G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, J.A. van
Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931–967.
[40] G. Schreckenbach, T. Ziegler, J. Phys. Chem. 99 (1995) 606–611.
[41] G. Schreckenbach, T. Ziegler, Int. J. Quantum Chem. 61 (1997) 899–918.
[42] S.K. Wolff, T. Ziegler, J. Chem. Phys. 109 (1998) 895–905.
[43] S.K. Wolff, T. Ziegler, E. van Lenthe, E.J. Baerends, J. Chem. Phys. 110 (1999) 7689–
7698.
[44] E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99 (1993) 4597–4610.
[45] J. Autschbach, T. Ziegler, in: M. Kaupp, M. Buhl, V.G. Malkin (Eds.), Calculation of
NMR and EPR Parameters: Theory and Application, Wiley-VCH & Co., Weinheim,
2004, pp. 249–264.
[46] H. Poleschner, K. Seppelt, Chem. Eur. J. 10 (2004) 6565–6574.
[47] T. Maaninen, H.M. Tuononen, K. Kosunen, R. Oilunkaniemi, J. Hitola, R. Laitinen, T.
Chivers, Z. Anorg. Allg. Chem. 630 (2004) 1947–1954.
[48] G. Schreckenbach, Y. Ruiz-Morales, T. Ziegler, J. Chem. Phys. 104 (1996) 8605–8612.
[49] J. Pilme, E.A. Robinson, R.J. Gillespie, Inorg. Chem. 45 (2006) 6198–6204.
[50] D.A. Dixon, W.A. de Jong, K.A. Peterson, K.O. Christe, G.J. Schrobilgen, J. Am. Chem.
Soc. 127 (2005) 8627–8634.
X
D0
¼
D
EelecðCBSÞ ꢀ
D
EZPE
þ
D
ECV
þ
D
ESR
þ
D
ESO
(2)
with the known [87,88] heats of formation at 0 K for the
elements,
kcal=mol, and
D
Hf0ðOÞ ¼ 58:99 kcal=mol,
D
Hf0ðFÞ ¼ 18:47 ꢅ 0:07
D
Hf0ðSeÞ ¼ 54:11 kcal=mol, we can derive
D
Hf0
values for the molecules under study. Heats of formation at
298 K were obtained by following the procedures outlined by
Curtiss et al. [89].
All CCSD(T) calculations were performed with the MOLPRO
program system [90] on the Dell Intel cluster at UA or on a Penguin
AMD cluster at UA. The DFT and nonrelativistic NMR chemical shift
calculations were done with the Gaussian program system [91]
The ZORA NMR calculations were done with the ADF program
system [39].
Acknowledgements
[51] D.A. Dixon, D.J. Grant, K.O. Christe, K.A. Peterson, Inorg. Chem. 47 (2008) 5485–
5494.
[52] D.A. Dixon, T.-H. Wang, D.J. Grant, K.A. Peterson, K.O. Christe, Inorg. Chem. 46
(2007) 10016–10021.
[53] M. Kaupp, Ch. van Wuellen, R. Franke, F. Schmitz, W. Kutzelnigg, J. Am. Chem. Soc.
118 (1996) 11939–11950.
[54] M. Klobukowski, J. Comput. Chem. 14 (1993) 1234–1239.
[55] A. Ellern, J.A. Boatz, K.O. Christe, T. Drews, K. Seppelt, Z. Anorg. Allg. Chem. 628
(2002) 1991–1999.
[56] H. Oberhammer, K.O. Christe, Inorg. Chem. 21 (1982) 273–275.
[57] G.C. Pimentel, J. Chem. Phys. 19 (1951) 446–448.
Financial support from the University of Munich, the Fonds der
Chemischen Industrie, and the Deutsche Forschungsgemeinschaft
(KL636/10-1) is gratefully acknowledged. The work at USC was
financially supported by the National Science Foundation, the Air
Force Office of Scientific Research, the Office of Naval Research, and
the Defense Threat Reduction Agency. This research was sup-
ported, in part, by the U.S. Department of Energy, Office of Basis
Energy Research, Chemical Sciences, in the geosciences program.
[58] R.J. Hach, R.E. Rundle, J. Am. Chem. Soc. 73 (1951) 4321–4324.
[59] I. Love, J. Phys. Chem. A 113 (2009) 2640–2646.
[60] R.F.W. Bader, Atoms in Molecules—A Quantum Theory, Oxford University Press,
Oxford, 1990.
References
[61] K.O. Christe, H. Oberhammer, Inorg. Chem. 20 (1981) 296–297.
[62] K.O. Christe, XXIVth International Congress of Pure and Applied Chemistry, vol. 4,
1974, 115–141.
[63] K.O. Christe, W. Sawodny, P. Pulay, J. Mol. Struct. 21 (1974) 158–164.
[64] R.S. Berry, J. Chem. Phys. 32 (1960) 933–938.
[1] W. Nakanishi, S. Hayashi, J. Phys. Chem. A 103 (1999) 6074–6081.
[2] R. Kniep, L. Korte, R. Kryschi, W. Poll, Angew. Chem., Int. Ed. 23 (1984) 388–389.
[3] K. Seppelt, Z. Anorg. Allg. Chem. 416 (1975) 12–18.
[4] I.C. Bowater, R.D. Brown, F.R. Burden, J. Mol. Spectrosc. 28 (1968) 454–460.