Mendeleev Commun., 2010, 20, 151–152
Vanillin was protected with MOMCl to obtain compound
O–THP
OH
10. The Wittig reaction carried out between compound 10
and (Ph)3P=CHMe resulted in (E)-11. Then, the MOM group
was cleaved by HCl to give intermediate (E)-isoeugenol 12
(Scheme 2).†
MeO
MeO
HO
+
MOM–O
9
12
MeO
HO
CHO
MeO
CHO
i, Ph3P, DEAD, THF, reflux
ii, HCl, MeOH, room temperature
MOMCl, NaH
THF, 93%
MOM–O
OH
10
2
9
7
MeO
HO
3
1
MeO
8
Ph3P=CHMe
THF, 82%
5'
2'
4
O
6
6'
4'
5
MOM–O
9'
3'
8'
1'
MeO
11
7'
10
1
2
5
MeO
3
1
7
9
HCl
Scheme 3
8
4
MeOH, room
temperature, 87%
6
spectrum of Machilin C, H7 resonated as a doublet signal at
d 4.84 with the coupling constant J 2.9 Hz indicates erythro-
configuration. Chiral analysis of Machilin C was in agreement
with that of compound 5 and reached 92% ee.
HO
12
Scheme 2
As shown in Scheme 3, the Mitsunobu protocol involves the
reaction of alcohol 9 and phenol 12 (NuH) in the presence
of triphenylphosphine and diethylazodicarboxylate to afford a
homologous compound containing a newly formed C–O bond.
In this reaction, the C8 stereogenic centre of compound 9 was
completely inverted from S- to R-configuration.14 Then, the
MOM and THP groups were cleaved by HCl in MeOH and
(1S,2R)-Machilin C 1 was obtained in 74% yield.† In the 1H NMR
In summary, we have developed a chiral synthetic method
of erythro-8-O-4'-neolignans to give Machilin C. With cheap
materials, short experimental procedures, mild conditions and
simple operations, the route can exhibit a more potential value
in the future.
This work was supported by the Specialized Research Fund
for the Doctoral Program of Higher Education of China (grant
no. 20093719120004), the Taishan Scholar Project of Shandong
Province (project no. 2005011036) and the Open Foundation of
Chemical Engineering Subject, Qingdao University of Science
& Technology, China.
(1S,2R)-Machilin C 1: amorphous powder in 92% ee, [a]D20 –18.4
†
(c 0.1, CHCl3). IR (KBr, n/cm–1): 3540, 2963, 2862, 1612, 1520, 1505,
1382, 1028. 1H NMR (500 MHz, CDCl3) d: 1.18 (d, 3H, C9H3, J 6.5 Hz),
1.87 (d, 3H, C9'H3, J 7.0 Hz), 3.87 (s, 3H, OMe), 3.91 (s, 3H, OMe),
4.35 (m, 1H, C8H), 4.84 (d, 1H, C7H, J 2.9 Hz), 6.18 (m, 1H, C8'H), 6.35
(m, 1H, C7'H), 6.75–7.10 (m, 6H, HAr). 13C NMR (125 MHz, CDCl3) d:
13.4 (C9), 18.3 (C9'), 56.0 (2OMe), 73.6 (C8), 82.4 (C7), 108.9 (C2),
109.4 (C2'), 113.9 (C5), 119.0 (C6'), 119.1 (C5'), 119.9 (C6), 125.0 (C8'),
130.5 (C7'), 131.9 (C1'), 133.7 (C1), 144.8 (C4), 145.6 (C3'), 146.5 (C3),
151.5 (C4'). EI-MS, m/z (%): 344 (M+, 2.6), 192 (25.7), 164 (3.8), 137
(4.6), 91 (100). HRMS, m/z: 362.1967 ([M + NH4]+, calc. for C20H28NO5:
362.1962). The spectral data are in agreement with those reported in the
literature.1
References
1
H. Shimomura, Y. Sashida and M. Oohara, Phytochemistry, 1987, 26,
1513.
2
3
R. S. Ward, Nat. Prod. Rep., 1999, 16, 75.
R. Q. Mei, Y. H. Wang, G. H. Du, G. M. Liu, L. Zhang and Y. X. Cheng,
J. Org. Chem., 2009, 72, 621.
4
5
F. Cutillo, B. D. Abrosca, M. Dellagreca, A. Fiorentino and A. Zarrelli,
J. Agric. Food Chem., 2003, 51, 6165.
H. J. Zhang, P. A. Tamez, V. D. Hoang, N. M. Cuong, D. T. Thao,
D. D. Siejarto, H. H. S. Fong and J. M. Pezzuto, J. Nat. Prod., 2001,
64, 772.
(1S,2S)-1-(4'-Benzyloxy-3'-methoxyphenyl)-1-(2''-oxotetrahydropyrane)-
propan-2-ol 8: amorphous powder, [a]D20 –31.8 (c 0.3, CHCl3). IR (KBr,
n/cm–1): 3418, 2936, 2869, 1593, 1513, 1457, 1380, 1263, 1137, 1028.
1H NMR (500 MHz, CDCl3) d: 1.00 (d, 3H, C9H3, J 7.0 Hz), 1.44–1.72
(m, 6H, C3'H2, C4'H2, C5'H2), 3.20 (m, 1H, C6'H), 3.45 (m, 1H, C6'H),
3.89 (s, 3H, C10H3), 3.84–4.05 (m, 1H, C8H), 4.16 (d, 1H, C7H, J 7.5 Hz),
4.84 (s, 1H, C2'H), 5.14 (s, 2H, phCH2O), 6.82–6.90 (m, 3H, C2H, C5H,
C6H), 7.30–7.44 (m, 5H, HAr). 13C NMR (125 MHz, CDCl3) d: 18.2
(C4'), 19.3 (C9), 25.2 (C5'), 30.5 (C3'), 55.9 (C10), 62.4 (phCH2O), 71.0
(C6'), 71.1 (C8), 85.7 (C7), 100.0 (C2'), 110.8, 113.4, 119.7, 127.3, 127.3,
127.8, 128.5, 128.5, 133.3, 137.1, 147.6, 149.3 (CAr). EI-MS, m/z (%):
372 (M+, 0.4), 328 (1.6), 288 (0.3), 271 (0.6), 243 (37), 91 (98), 85 (100).
HRMS, m/z: 390.2275 ([M + NH4]+, calc. for C17H30NO6: 390.2273).
(E)-Isoeugenol 12: amorphous powder. IR (KBr, n/cm–1): 3450, 3017,
6
7
R. G. Ridley, Nature, 2002, 415, 686.
L. E. S. Barata, L. S. Santos, P. H. Ferri, J. D. Phillipson, A. Paine and
S. L. Croft, Phytochemistry, 2000, 55, 589.
M. Sefkow, Synthesis, 2003, 2595.
8
9
S. Zacchino, J. Nat. Prod., 1994, 57, 446.
10 C. Curti, F. Zanardi, L. Battistini, A. Sartori, G. Rassu, L. Pinna and
G. Casiraghi, J. Org. Chem., 2006, 71, 8552.
11 V. A. Soloshonok, Angew. Chem. Int. Ed., 2006, 45, 766.
12 V. A. Soloshonok, H. Ueki, M. Yasumoto, S. Mekala, J. S. Hirschi and
D. A. Singleton, J. Am. Chem. Soc., 2007, 129, 12112.
13 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung,
K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Q. Xu and
X. L. Zhang, J. Org. Chem., 1992, 57, 2768.
1
2962, 2850, 1696, 1675, 1513, 1427, 1267, 1207, 1034, 963. H NMR
(500 MHz, CDCl3) d: 1.84 (d, 3H, C9H3, J 6.5 Hz), 3.82 (s, 3H, C10H3),
6.08 (m, 1H, C8H), 6.30 (d, 1H, C7H, J 15.0 Hz), 6.79–6.87 (m, 3H,
C2H, C5H, C6H). 13C NMR (125 MHz, CDCl3) d: 18.3 (C9), 55.8 (C10),
107.9, 114.4, 119.2, 123.2 (C8), 130.6, 130.7 (C7), 144.7, 146.4. EI-MS,
m/z (%): 164 (M+, 100), 149 (53), 131 (22), 103 (12), 91 (18), 55 (13).
14 O. Mitsunobu, Synthesis, 1981, 1.
Received: 27th October 2009; Com. 09/3409
– 152 –