646; (f) C. Scriban and D. S. Glueck, J. Am. Chem. Soc., 2006, 128,
2788; (g) M. J. McGrath and P. O’Brien, J. Am. Chem. Soc., 2005,
127, 16378; (h) D. Stead, P. O’Brien and A. Sanderson, Org. Lett.,
2008, 10, 1409; (i) T. Imamoto, J. Watanabe, Y. Wada,
H. Masuda, H. Yamada, H. Tsurta, S. Matsukawa and
K. Yamaguchi, J. Am. Chem. Soc., 1998, 120, 1635.
3 (a) H. H. Karsch, Chem. Ber., 1996, 129, 483; (b) W.-P. Leung,
K. S. M. Poon, T. C. W. Mak and Z.-Y. Zhang, Organometallics,
1996, 15, 3262; (c) I. Kamps, A. Mix, R. J. F. Berger, B. Neumann,
H.-G. Stammler and N. W. Mitzel, Chem. Commun., 2009, 5558.
4 For review, see: D. Schildbach and C. Strohmann, in The
Chemistry of Organolithium Compounds, ed. Z. Rappoport and
I. Marek, Wiley, Chichester, 2004, pp. 941–996.
5 For reviews, see: (a) V. H. Gessner, C. Daschlein and
¨
C. Strohmann, Chem.–Eur. J., 2009, 15, 3320; (b) T. Stey and
D. Stalke, in The Chemistry of Organolithium Compounds, ed.
Z. Rappoport and I. Marek, Wiley, Chichester, 2004, pp. 47–120.
6 R. E. Cramer, M. A. Bruck and J. W. Gilje, Organometallics, 1986,
5, 1496.
7 D. R. Armstrong, W. Clegg, H. M. Colquhoun, J. A. Daniels,
R. E. Mulvey, I. R. Stephenson and K. Wade, J. Chem. Soc.,
Chem. Commun., 1987, 630.
8 For further reports about Li–H–B interactions see: (a) A. Heine
and D. Stalke, J. Organomet. Chem., 1997, 542, 25; (b) K. Izod,
L. J. Bowman, C. Wills, W. Clegg and R. W. Harrington, Dalton
Trans., 2009, 3340; (c) K. Izod, W. McFarlane, B. V. Tyson,
W. Clegg and R. W. Harrington, Chem. Commun., 2004, 570;
(d) K. Izod, C. Wills, W. Clegg and R. W. Harrington, Organo-
metallics, 2006, 25, 38.
Fig. 3 Optimised transition state structures of the mono- and
dilithiation of 1 with tBuLiꢁTMEDA; B3LYP/6-31+G(d).
decomposition reactions of the solvent or the chiral additive.
The deprotonation of the (R,R)-TMCDA ligand for example
showed a barrier of 98 kJ molꢀ1, and lithiation of TMEDA a
barrier of 101 kJ molꢀ1, which are higher than the barrier of
the dilithiation.15 Consequently, the calculations confirm the
observed favoritism of the dilithiation over the decomposition
of the ligand and the solvent and thus explains the possible
direct deprotonation of both methyl groups.
9 V. H. Gessner, Dissertation, Technische Universitat Dortmund,
¨
2009.
10 For dilithiation of aromatic compounds, see: (a) M. Kranz,
H. Dietrich, W. Mahdi, G. Muller, F. Hampel, T. Clark,
¨
In conclusion, we reported on the unexpected direct
dilithiation of the prochiral dimethylphenylphosphine borane
1. X-ray diffraction analysis of the diamine coordinated,
dilithiated product 3 showed an extraordinary structural
motif. Computational studies explain the facile deprotonation
of both methyl groups by the interaction of the lithium atoms
with the hydrogens of the borane moiety. We are currently
evaluating the potential of 3 as dilithiated building block for
different electrophiles and stepwise addition reactions.
We thank the Deutsche Forschungsgemeinschaft and the
Fonds der Chemischen Industrie (FCI). V.H.G specially thanks
the FCI for the award of a doctoral scholarship.
R. Hakcer, W. Neugebauer, A. J. Kos and P. v. R. Schleyer,
J. Am. Chem. Soc., 1993, 115, 4698; (b) G. Linti, A. Rodid and
H. Pritzkow, Angew. Chem., Int. Ed., 2002, 41, 4503;
(c) A. W. Kleij, H. Kleijn, J. T. B. H. Jastrzebski, W. J. J.
Smeets, A. L. Spek and G. van Koten, Organometallics, 1999,
18, 268; (d) M. Winkler and M. Lutz amd G. Muller, Angew.
¨
Chem., Int. Ed. Engl., 1994, 33, 2279; (e) P. Chadha, J. L. Dutton,
M. J. Sgro and P. J. Ragogna, Organometallics, 2007, 26, 6063;
(f) H. Braunschweig, N. Buggisch, U. Englert, M. Homberger,
T. Kupfer, D. Leusser, M. Lutz and K. Radacki, J. Am. Chem.
Soc., 2007, 129, 4840; (g) C. Strohmann, K. Lehmen, A. Ludwig
and D. Schildbach, Organometallics, 2001, 20, 4138.
11 For dilithiation of saturated compounds, see: (a) J. F. K. Muller,
¨
M. Neuburger and B. Springer, Angew. Chem., Int. Ed., 1999, 38,
92; (b) J. F. K. Muller, M. Neuburger and B. Springer, Angew.
¨
References
Chem., Int. Ed., 1999, 38, 3549; (c) A. Kasani, R. P. K. Babu,
R. McDonald and R. G. Cavell, Angew. Chem., Int. Ed., 1999, 38,
1483; (d) C. M. Ong and D. W. Stephan, J. Am. Chem. Soc., 1999,
121, 2939; (e) C. Strohmann, Angew. Chem., Int. Ed. Engl., 1996,
35, 528; (f) C. Strohmann, K. Lehmen and S. Dilsky, J. Am. Chem.
z Crystal data for the dilithiated phosphine borane 4:
C46H90B2Li4N6P2, M = 838.56 g molꢀ1, triclinic, P1, a = 13.792(4)
A, b = 14.275(5) A, c = 16.271(4) A, a = 76.327(7)1, b = 66.351(7)1,
g = 65.941(5)1, V = 2669.3(15) A3, T = 173(2) K, Z = 2, 56322
reflections measured, 18625 independent reflections (Rint = 0.0522).
R1 = 0.0603 [reflections with I > 2s(I)], wR2 = 0.1555 (all data).
CCDC 746595; Crystal data for dialcohol 8: C34H34BO2P,
M = 516.39 g molꢀ1, monoclinic, P21/c, a = 11.9867(15) A,
Soc., 2006, 128, 8102; (g) C. Strohmann, S. Ludtke and O. Ulbrich,
¨
Organometallics, 2000, 19, 4223; C. Strohmann and B. C. Abele,
Angew. Chem., 1996, 108, 2514; (h) C. Strohmann, S. Ludtke and
E. Wack, Chem. Ber., 1996, 129, 799.
¨
12 Also the one-step coupling reaction of 3 with CuCl2 to a six-
membered phosphorous cycle is possible (see ESI): This compound
has been described via a stepwise deprotonation: Y. Morisaki,
H. Imoto, Y. Ouchi, Y. Nagata and Y. Chujo, Org. Lett., 2008, 10,
1489.
b
= 13.8915(11) A, c = 17.6964(16) A, b = 109.362(12)1,
V = 2780.0(5) A3, T = 173(2) K, Z = 4, 17640 reflections measured,
5408 independent reflections (Rint = 0.0358). R1 = 0.0371 [reflections
with I > 2s(I)], wR2 = 0.0727 (all data). CCDC 746596.
13 M. J. Frisch et al., Gaussian03 (Revision D.01), see ESI.
14 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
1 (a) H. B. Kagan and T. P. Dang, J. Am. Chem. Soc., 1972, 94,
6429; (b) W. S. Knowles, Acc. Chem. Res., 1983, 16, 106;
(c) M. D. Fryzuk and B. Bosnich, J. Am. Chem. Soc., 1978, 100,
5491; (d) R. Noyori and H. Takaya, Acc. Chem. Res., 1990, 23,
345.
2 For examples, see: (a) A. R. Muci, K. R. Campos and D. A. Evans,
J. Am. Chem. Soc., 1995, 117, 9075; (b) K. Nagata, S. Matsukawa
and T. Imamoto, J. Org. Chem., 2000, 65, 4185; (c) C. Genet,
S. J. Canipa, P. O’Brien and S. Taylor, J. Am. Chem. Soc., 2006,
128, 9336; (d) K. M. Pietrusiewicz and M. Zablocka, Chem. Rev.,
1994, 94, 1375; (e) D. Liu and X. Zhang, Eur. J. Org. Chem., 2005,
15 (a) C. Strohmann, V. H. Gessner and A. Damme, Chem. Commun.,
2008, 3381; (b) C. Strohmann and V. H. Gessner, Angew. Chem.,
Int. Ed., 2007, 46, 4566; (c) C. Strohmann and V. H. Gessner,
Angew. Chem., Int. Ed., 2007, 46, 8281; (d) C. Strohmann and
V. H. Gessner, J. Am. Chem. Soc., 2007, 129, 8952;
(e) C. Strohmann and V. H. Gessner, J. Am. Chem. Soc., 2008,
130, 11719; (f) V. H. Gessner and C. Strohmann, J. Am. Chem.
Soc., 2008, 130, 14412; (g) V. H. Gessner and C. Strohmann,
Organometallics, 2010, 29, 1858.
ꢂc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4719–4721 | 4721