We notice that the absorption coefficients of YDD0 are, in
general, greater than those of YD0 and YDD1 (Fig. 1), but the
values of IPCE of the former are substantially lower than
those of the latter (Fig. 3b). As the results of dye-loading
experiments (Fig. S4, ESIw) show similar amounts of dye
molecules (B75 nmol cmÀ2) being sensitized on TiO2 films
for YD0-YDD1, the smaller external quantum efficiencies of
YDD0 relative to those of YD0 or YDD1 are thus inferred to
arise from the efficiency of electron injection into TiO2, which
was smaller for the former than for the latter. There are two
reasons that explain these effects; one is that the LUMO
energy level of YDD0 is much lower than that of YD0 or
YDD1, which might impede electron injection for the former.
The other is that the nearly planar structure of YDD0
facilitates p-conjugation between two porphyrin macrocycles
and provides a decreased driving force to push electrons
toward TiO2; this explanation is consistent with the frontier
orbital pictures shown in the supplementary Fig. S2 (ESIw).
The planar geometry of YDD0 might also facilitate the
formation of dye aggregates that significantly decrease the
efficiency of electron injection.
2 (a) Z.-S. Wang, Y. Cui, K. Hara, Y. Dan-ho, C. Kasada and
A. Shinpo, Adv. Mater., 2007, 19, 1138; (b) A. Mishra, M. K. R.
Fischer and P. Bauerle, Angew. Chem., Int. Ed., 2009, 48, 2474.
¨
3 (a) S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska,
´
P. Comte, P. Pechy and M. Gratzel, Chem. Commun., 2008, 5194;
¨
(b) T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, J. Am.
Chem. Soc., 2004, 126, 12218.
4 (a) T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson,
X. Ai, T. Lian and S. Yanagida, Chem. Mater., 2004, 16, 1806;
(b) K. Hara, T. Sato, R. Katoh, A. Furabe, T. Yoshihara,
M. Murai, M. Kurashige, S. Ito, A. Shinpo, S. Suga and
H. Arakawa, Adv. Funct. Mater., 2005, 15, 246.
5 (a) S. Kim, H. Choi, D. Kim, K. Song, S. O. Kang and J. Ko,
Tetrahedron, 2007, 63, 9206; (b) I. Jung, J. K. Lee, K. H. Song,
K. Song, S. O. Kang and J. Ko, J. Org. Chem., 2007, 72, 3652.
6 (a) G. Li, Y.-F. Zhou, X.-B. Cao, P. Bao, K.-J. Jiang, Y. Lin and
L.-M. Yang, Chem. Commun., 2009, 2201; (b) G. Zhang, H. Bala,
Y. Cheng, D. Shi, X. Lv, Q. Yu and P. Wang, Chem. Commun.,
2009, 2198.
7 (a) S. Ferrere and B. A. Greg, New J. Chem., 2002, 26, 1155;
(b) Y. Shibano, T. Umeyama, Y. Matano and H. Imahori, Org.
Lett., 2007, 9, 1971.
8 (a) S. Ushiroda, N. Ruzycki, Y. Lu, M. T. Spitler and
B. A. Parkinson, J. Am. Chem. Soc., 2005, 127, 5158;
(b) S. Tatay, S. A. Haque, B. O’Regan, J. R. Durrant,
W. J. H. Verhees, J. M. Kroon, A. Vidal-Ferran, P. Gavina and
E. Palomares, J. Mater. Chem., 2007, 17, 3037.
In conclusion, we have synthesized porphyrin dimers with
varied connectivity (YDD0–YDD3) between the two porphyrin
moieties; their nature significantly influences their spectral,
electrochemical and photovoltaic properties. Among these
porphyrin dimers, YDD1 exhibited the greatest photocurrent
density because of its flat IPCE spectrum with external quantum
efficiencies B70% covering the entire visible spectral region.
Although YDD0 displayed a further broad IPCE spectrum
extending to the near-IR region, the cell performance was
not improved because of the smaller quantum efficiencies
(producing a smaller short-circuit current density) and open-
circuit voltage. The best photovoltaic performance of YDD1
attained 5.2%, which is slightly greater than, but comparable
with, that of the reference monoporphyrin YD0. Introduction
of an electron-donating group such as diarylamine into the
meso-position opposite the anchoring group significantly
increases the efficiency of conversion of solar energy to
electricity.21 Preparation of diporphyrin dyes incorporating
electron-donating groups to improve the cell performance for
DSSC applications is in progress.
9 (a) Q.-H. Yao, L. Shan, F.-Y. Li, D.-D. Yin and C.-H. Huang,
New J. Chem., 2003, 27, 1277; (b) Y.-S. Chen, C. Li, Z.-H. Zeng,
W.-B. Wang, X.-S. Wang and B.-W. Zhang, J. Mater. Chem.,
2005, 15, 1654.
10 (a) X.-F. Wang, O. Kitao, H. Zhou, H. Tamiaki and S.-i. Sasak,
Chem. Commun., 2009, 1523; (b) Y. Liu, N. Xiang, X. Feng,
P. Shen, W. Zhou, C. Weng, B. Zhao and S. Tan, Chem. Commun.,
2009, 2499.
11 B. C. O’Regan, I. Lopez-Duarte, M. V. Martınez-Dıaz, A. Forneli,
´ ´ ´
J. Albero, A. Morandeira, E. Palomares, T. Torres and
J. R. Durrant, J. Am. Chem. Soc., 2008, 130, 2906.
12 (a) J. He, G. Benko, F. Korodi, T. Polıvka, R. Lomoth,
´
¨
B. Akermark, L. Sun, A. Hagfeldt and V. Sundstrom, J. Am.
¨
Chem. Soc., 2002, 124, 4922; (b) Y. Hao, X. Yang, J. Cong,
H. Tian, A. Hagfeldt and L. Sun, Chem. Commun., 2009, 4031;
(c) H. Tian, X. Yang, R. Chen, A. Hagfeldt and L. Sun, Energy
Environ. Sci., 2009, 2, 674.
13 H. Imahori, T. Umeyama and S. Ito, Acc. Chem. Res., 2009, DOI:
10.1021/ar900034t.
14 (a) P. J. Angiolillo, V. S.-Y. Lin, J. M. Vanderkooi and
M. J. Therien, J. Am. Chem. Soc., 1995, 117, 12514; (b) A. B. F.
Martinson, T. W. Hamann, M. J. Pellin and J. T. Hupp,
Chem.–Eur. J., 2008, 14, 4458.
15 A. Tsuda and A. Osuka, Science, 2001, 293, 79.
16 R. W. Wagner, T. E. John, F. Li and J. S. Lindsey, J. Org. Chem.,
1995, 60, 5266.
17 N. Aratani and A. Osuka, Org. Lett., 2001, 3, 4213.
18 A. Tsuda, H. Furuta and A. Osuka, J. Am. Chem. Soc., 2001, 123,
10304.
National Science Council of Taiwan and Ministry of
Education of Taiwan, under the ATU program, provided
support for this project.
19 A. K. Sahoo, Y. Nakamura, N. Aratani, K. S. Kim, S. B. Noh,
H. Shinokubo, D. Kim and A. Osuka, Org. Lett., 2006, 8, 4141.
20 H. S. Cho, D. H. Jeong, S. Cho, D. Kim, Y. Matsuzaki, K. Tanaka,
A. Tsuda and A. Osuka, J. Am. Chem. Soc., 2002, 124, 14642.
21 C.-W. Lee, H.-P. Lu, C.-M. Lan, Y.-L. Huang, Y.-R. Liang,
W.-N. Yen, Y.-C. Liu, Y.-S. Lin, E. W.-G. Diau and C.-Y. Yeh,
Chem.–Eur. J., 2009, 15, 1403.
Notes and references
1 (a) B. O’Regan and M. Gratzel, Nature, 1991, 353, 737;
¨
(b) M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker,
E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am.
¨
¨
Chem. Soc., 1993, 115, 6382.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 809–811 | 811