H. Rudler et al. / Journal of Fluorine Chemistry 131 (2010) 738–741
741
[3] H. Rudler, A. Parlier, C. Sandoval-Chavez, P. Herson, J.C. Daran, Angew. Chem. Int.
Ed. 47 (2008) 6843–6846.
(1 M, 0.2 mL). After 17 h at room temperature water was added
and the organic layer washed several times with water. After
evaporation of the volatiles, the residue was chromatographed on
silica gel. Elution with light petroleum ether/ethyl acetate (95/5)
led successively to two oily, difficult to separate compounds in
equal amounts 17a (18 mg, 30% yield))and 17b (19 mg, 30% yield)
[4] R. Kumar, R. Chandra, in: R. Katritzky (Ed.), Advances in Heterocyclic Chemistry,
vol.78, University of Florida, Gainesville, 2001, pp. 259–313.
[5] (a) G. Maas, P. Stang, J. Org. Chem. 46 (1981) 1606–1610;
(b) I.L. Baraznenok, V.G. Nenajdenko, E.S. Balenkova, Tetrahedron 56 (2000)
3077–3119.
[6] (a) For the introduction of CF3 see for example K. Sato, M. Higashinagata, T. Yuki,
A. Tarui, M. Omote, I. Kumadaki, A. Ando, J. Fluorine Chem. 129 (2008) 51–55;
(b) T. Billard, B.R. Langlois, Eur. J. Org. Chem. (2007) 891–897;
(c) E. Magnier, J.C. Blazejewski, M. Tordeux, C. Wakselman, Angew. Chem. Int. Ed.
45 (2006) 1279–1282;
17a: 1H NMR (400 MHz, CDCl3):
3.19 (dq, J = 16, 11 Hz, 1H, CH2), 2.50 (q, J = 2 Hz, 1H, OH), 2.09 (dq,
J = 16, 11 Hz, 1H, CH2); 13C NMR (100 MHz, CDCl3)
138.82 (q
d 7.59 (m, 2H), 7.40 (m, 3H),
d
(d) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 46 (2007) 754–757;
(e) N. Shibata, S. Mizuta, H. Kawai, Tetrahedron: Asymmetry 19 (2008) 2633–
2644;
(f) K. Sato, M. Higashinagata, T. Yuki, A. Tarui, I. Kumadaki, A. Ando, J. Fluorine
Chem. 129 (2008) 51–55;
arom), 128.92, 127.83, 127.78 (arom), 126.45 (q, J = 276 Hz, CF3),
127.56 (arom), 78.14 (C–OH), 39.36 (q, J = 25 Hz, CH2); 19F NMR
(376 MHz, CDCl3)
d
ꢀ58.03 (dt, J = 11, 2 Hz); HRMS calcd for
C
18H16F6O2Na: 401.09467, found 401.09418. 17b:1H NMR
(g) J. Boivin, L.E. Kaim, S.Z. Zard, Tetrahedron Lett. 33 (1992) 1285–1288;
(h) T. Umemoto, S. Ishihara, Tetrahedron Lett. 25 (1990) 3579–3582;
(i) M. Me´debielle, W.R. Dolbier Jr., J. Fluorine Chem. 129 (2008) 930–942.
[7] (a) For the loss of SO2 from CF3SO2 see C.-M. Hu, F.-L. Qing, W.-Y. Huang, J. Org.
Chem. 56 (1991) 2801–2804;
(b) B. Langlois, B. Laurent, N. Roidot, Tetrahedron Lett. 33 (1992) 1291–1292.
[8] (a) R.W. Binkley, M.G. Ambrose, J. Org. Chem. 48 (1983) 1777–1779;
(b) T. Netscher, P. Bohrer, Tetrahedron Lett. 46 (1996) 8359–8362 (see also).
[9] I. Al Adel, B. Adeoti Salami, J. Levisalles, H. Rudler, Bull. Chem. Soc. (1976) 930–
933.
(400 MHz, CDCl3):
d 7.32 (m, 5H), 3.30 (q, J = 2 Hz, 1H, OH), 3.13
(dq, J = 16, 11 Hz, 1H, CH2), 2.43 (dq, J = 16, 11 Hz, 1H, CH2); 13C
NMR (100 MHz, CDCl3)
(q, J = 276 Hz, CF3), 78.94 (C–OH), 37.91 (q, J = 26 Hz, CH2); 19F
NMR (376 MHz, CDCl3)
ꢀ57.81 (t, J = 11 Hz).
d 137.02 (q arom), 128.49 (arom), 126.41
d
Supplementary material
[10] R.E. Balsells, A.R. Frasca, Tetrahedron 38 (1982) 245–255 (see for example).
[11] P.J. Stang, A.G. Anderson, J. Am. Chem. Soc. 100 (1978) 1520–1528.
[12] M.A. Brook, Silicon in Organic, Organometallic and Polymer Chemistry, J. Wiley,
New-York, 2000.
[13] One of the referees suggested the involvement of trifluoromethyltrifluorometha-
nesulfonate CF3OSO2CF3, which might form during the preparation of triflic
anhydride, as a source of CF3 radicals. Although such a hypothesis cannot be fully
eliminated at the present stage, we did not observe the formation of dimers
during the interaction of triflic anhydride with the enol ether 12 in the absence of
collidine. See also S.L. Taylor, J.C. Martin, J. Org. Chem. 52 (1987) 4147–4159 (and
references therein).
Crystallographic data (excluding structure factors) for the
structural analysis of 13a have been deposited with the Cambridge
Crystallographic Data Centre: CCDC No 738546. Copies of the
crystallographic data may be obtained free of charge from: The
Director, CCDC, 12 Union Road, Cambridge CB2 1Z, UK (fax: +44 123
References
[14] Vinyl triflates have been prepared starting either from the corresponding ketones
upon their interaction with triflic anhydride in the presence of an amine, in rather
low yields (45%) or from the (TMS) enol ethers, via their lithium enolates [11].
Alkyl triflates were similarly obtained from the corresponding alkyl ethers and
triflic anhydride [15]. The transformations of enol ethers into vinyl triflates
observed herein will be described in a forthcoming paper.
´
´
´
[1] (a) J.P. Begue, D. Bonnet-Delpon, Chimie Bioorganique et Medicinale du Fluor,
EDP Sciences/CNRS, Paris, France, 2005;
(b) K.L. Kirk, Org. Process Res. Dev. 12 (2008) 305–321;
(c) D. O’Hagan, Chem. Soc. Rev. 37 (2008) 308–319.
[2] (a) H. Rudler, A. Parlier, L. Hamon, P. Herson, P. Chaquin, J.C. Daran, Tetrahedron
65 (2009) 5552–5562;
´
´
[15] C. Aubert, J.P. Begue, Synthesis (1985) 759–760.
[16] For related trimerization reactions see for example F. Ono, Y. Ishikura, Y. Tada, M.
Endo, T. Sato, Synlett, (2008) 2365–2367.
(b) A. Parlier, C. Kadouri-Puchot, S. Beaupierre, N. Jarosz, H. Rudler, L. Hamon, P.
Herson, J.C. Daran, Tetrahedron Lett. 50 (2009) 7274–7279.