4064
M. K. Ameriks et al. / Bioorg. Med. Chem. Lett. 20 (2010) 4060–4064
References and notes
1. Roberts, R. Drug News Perspect. 2005, 18, 605.
2. (a) Gupta, S.; Kumar Singh, R.; Dastidar, S.; Ray, A. Exp. Opin. Ther. Targets 2008,
12, 291; (b) Liu, W.; Spero, D. M. Drug News Perspect. 2004, 17, 357.
3. Nakagawa, T. Y.; Brissette, W. H.; Lira, P. D.; Griffiths, R. J.; Petrushova, N.;
Stock, J.; McNeish, J. D.; Eastman, S. E.; Howard, E. D.; Clarke, S. R. M.; Rosloniec,
E. F.; Elliott, E. A.; Rudensky, A. Immunity 1999, 10, 207.
4. (a) Burden, R. E.; Gormley, J. A.; Jaquin, T. J.; Small, D. M.; Quinn, D. J.; Hegarty,
S. M.; Ward, C.; Walker, B.; Johnston, J. A.; Olwill, S. A.; Scott, C. J. Clin. Cancer
Res. 2009, 15, 6042; (b) Taleb, S.; Clement, K. Clin. Chem. Lab. Med. 2007, 45,
328; (c) Lutgens, E.; Faber, B.; Schapira, K.; Evelo, C. T. A.; van Haaften, R.;
Heeneman, S.; Kitty, B. J. M.; Cleutjens, A. P. B.; Beckers, L.; Porter, J. G.; Mackay,
C. R.; Rennert, P.; Bailly, V.; Jarpe, M.; Dolinski, B.; Koteliansky, V.; de
Fougerolles, T.; Daeman, M. J. A. P. Circulation 2005, 111, 3443; (d) Wendt,
W.; Lubbert, H.; Stichel, C. C. Brain Res. 2008, 1232, 7; (e) Irie, O.; Kosaka, T.;
Ehara, T.; Yokokawa, F.; Kanazawa, T.; Hirao, H.; Iwasaki, A.; Skakai, J.; Teno, N.;
Hitomi, Y.; Iwasaki, G.; Fukaya, H.; Nonomura, K.; Tanabe, K.; Koizumi, S.;
Uchiyama, N.; Bevan, S. J.; Malcangio, M.; Gentry, C.; Fox, A. Y.; Yaqoob, M.;
Culshaw, A. J.; Hallett, A. J. Med. Chem. 2008, 51, 5502.
5. Thurmond, R. L.; Beavers, M. P.; Cai, H.; Meduna, S. P.; Gustin, D. L.; Sun, S.;
Almond, H. J.; Karlsson, L.; Edwards, J. P. J. Med. Chem. 2004, 47, 4799.
6. (a) Thurmond, R. L.; Sun, S.; Sehon, C. A.; Baker, S. M.; Cai, H.; Gu, Y.; Jiang, W.;
Riley, J. P.; Williams, K. N.; Edwards, J. P.; Karlsson, L. J. Pharmacol. Exp. Ther.
2004, 308, 268; (b) Gustin, D. J.; Sehon, C. A.; Wei, J.; Cai, H.; Meduna, S. P.;
Khatuya, H.; Sun, S.; Gu, Y.; Jiang, W.; Thurmond, R. L.; Karlsson, L.; Edwards, J.
P. Bioorg. Med. Chem. Lett. 2005, 15, 1687.
7. (a) Allen, D.; Ameriks, M. K.; Axe, F. U.; Burdett, M.; Cai, H.; Choong, I.; Edwards,
James P.; Lew, W.; Meduna, S. P. PCT Int. Appl. WO2008100635A1, 2008.; (b)
Allen, D.; Ameriks, M. K.; Axe, F. U.; Burdett, M.; Cai, H.; Choong, I.; Edwards, J.
P.; Lew, W.; Meduna, S. P. PCT Int. Appl. WO2008100620A2, 2008.
8. For recent reviews on fragment-based drug discovery, see: (a) Congreve, M.;
Chessari, G.; Tisi, D.; Woodhead, A. J. J. Med. Chem. 2008, 51, 3661; (b) Jahnke,
W., Erlanson, D. A., Eds. Fragment-Based Approaches in Drug Discovery. In
Methods and Principles in Medicinal Chemistry, Mannhold, R., Kubinyi, H.,
Folkers, G., Eds.; 2006; Vol. 34, Wiley-VCH: Weinheim, Germany.
9. Fragment-based screening has been utilized to identify CatS inhibitors: Wood,
W. J.; Patterson, A. W.; Tsuruoka, H.; Jain, R. K.; Ellman, J. A. J. Am. Chem. Soc.
2005, 127, 15521.
10. The term Tethering is a service mark of Sunesis Pharmaceuticals Inc. for its
fragment-based drug discovery: (a) Oslob, J. D.; Erlanson, D. A. Drug Discovery
Today 2004, 3, 143; (b) Erlanson, D. A.; Braisted, A. C.; Raphael, D. R.; Randal,
M.; Stroud, R. M.; Gordon, E. M.; Wells, J. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
9367.
Figure 4. Crystal structure of pyrimidinone 27 bound to Cys25Ser cathepsin S (PDB
code: 3MPE). A bridging water molecule (red) is observed in the back of the S2
subsite. Hydrogen bonds are shown in green.
general, the binding modes for pyrimidinone 27 and pyridazinone
12 (Fig. 3) are very similar, with both inhibitors spanning S3, S2,
and S5 and interacting with the protein through only one direct
hydrogen bond (Gly69). However, although a conserved water
molecule is still present in the back of the S2 pocket for pyrimidi-
none 27, it appears that the carbonyl group of the inhibitor did in-
deed displace the second water molecule observed in the crystal
structure of pyridazinone 12. Thus, it is possible that the eightfold
improvement in activity for 27 relative to 12 can be attributed to
several factors: (1) the entropic gain associated with the release
of a bound water,17 (2) a stronger donor–acceptor interaction be-
tween the bound water and the pyrimidinone carbonyl (2.9 Å)
compared to the pyridazinone nitrogen (3.6 Å), and (3) the fact that
the water molecule bound to 27 interacts directly with the back-
bone amides of Met71 and Thr72, unlike the water molecule bound
to 12 which can only interact with these residues through another
bridging water. It is also important to note that pyridazinone 22,
pyrimidinone 27, and pyrazinone 32 all show similar enzymatic
activity, suggesting that the position of the second diazinone nitro-
gen atom is not essential. This may be attributed to the fact that
these diazinones are all electron-poor heterocycles which appear
11. Turkenberg, J. P.; Lamers, M. B. A. C.; Brzozowski, A. M.; Wright, L. M.; Hubbard,
R. E.; Sturt, S. L.; Williams, D. H. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2002,
D58, 451.
12. CatS cysteine mutants were expressed in SF9 cells as histidine-tagged proteins.
Following purification over
a Ni–NTA column, the CatS mutants were
processed by 0.4 mg/mL pepsin, 100 mM NaOAc, pH 4.5, 5 mM DTT, 2.5 mM
EDTA for 2 h at 40 °C. Pepsin enzymatic activity was stopped by raising the pH
of the digestion to 7.5. Further purification was not required for screening,
since the molecular weight of pepsin is larger than CatS and does not interfere
with deconvolution of the fragment hits.
13. Monophore screening conditions: 10–15
lM
CatS mutant, 1 mM b-
mercaptoethanol, 50 M monophore (500 M total in pools of 10), 50 mM
l
l
Tris, pH 7.5. Monophore hits were identified by visual inspection of the
deconvoluted masses of the monophore-protein conjugates and then ranked
by fractional conjugation (the fraction of protein that remains conjugated to
the discrete monophores in the presence of increasing concentrations of b-
mercaptoethanol).
14. For a detailed description of the enzymatic assay, see: Allen, D.; Choong, I.;
Lew, W. PCT Int. Appl. WO2008100622A2, 2008.
to interact with the protein through a face-to-face
interaction with Phe211 in S2.
p
-stacking
15. The monophore corresponding to adduct 3 was non-covalently docked to the
structure of CatS in the area surrounding the E115C residue. Only binding
conformations that placed the sulfur of the linker within 5 Å of the cysteine
residue were retained. The monophores were then covalently attached as
disulfides to the cysteine mutant and minimization was attempted to match
each conformation from the non-covalent docking. The conformations were
then scored and the lowest energy conformation for adduct 3 is shown in
Figure 2.
In conclusion, a pyridazin-4-one fragment 4 (hCatS = 170
l
M)
discovered through Tethering was modeled into cathepsin S and
predicted to overlap in S2 with the tetrahydropyridinepyrazole
core of a previously disclosed series of CatS inhibitors. This frag-
ment served as
a template to design pyridazin-3-one 12
16. Coates, W. J.; McKillop, A. Synthesis 1993, 25, 334.
(hCatS = 430 nM), which also incorporates P3 and P5 binding
elements. A crystal structure of 12 bound to Cys25Ser CatS re-
vealed a pair of bound water molecules in the back of the S2 pocket
that facilitate a network of bridging interactions between the
inhibitor and the protein. The oxygen atom of pyrimidinone 27
(hCatS = 40 nM) is able to displace one of these bound waters,
resulting in an eightfold improvement in enzymatic activity.
17. (a) Barillari, C.; Taylor, J.; Essex, J. W. J. Am. Chem. Soc. 2007, 129, 2577; (b) Lu,
Y.; Chao-Yie, Y.; Wang, S. J. Chem. Inf. Model. 2007, 47, 668; (c) Hamelberg, D.;
McCammon, J. A. J. Am. Chem. Soc. 2004, 126, 7683.
18. Gong, Y.; He, W. Heterocycles 2004, 62, 851.
19. Kress, T. J. J. Org. Chem. 1985, 50, 3073.
20. TC7 cellular permeability data (Cerep, Inc.), Papp (10ꢁ6 cm/s): compound 22, A–
B = 1.3/B–A = 1.5; compound 27, A–B = 2.5/B–A = 2.9; compound 32, A–B = 0.6/
B–A = 3.7.