solution and solid-state fluorescence, and materials with
reduced and low band gaps. As a result, these materials have
been applied to organic light-emitting diodes (OLEDs),9
organic photovoltaic cells (OPVs),10-14 electrochromics,13
and field effect transistors (FETs).7,8,11,13 One limitation of
the current DTP building blocks, however, is the high energy
of the HOMO, which limits stability and the effective
application of DTP-based materials to various devices. As a
solution to this limitation, we report herein the successful
synthesis of a new class of DTPs that incorporate N-acyl
groups to significantly stabilize the HOMO and LUMO
energy levels.
Scheme 1. Synthesis of N-Acyldithieno[3,2-b:2′,3′-d]pyrroles
utility of 1, new synthetic methods for its production were
desirable. By utilizing LDA, rather than BuLi, selective
deprotonation of the more cost-effective 3-bromothiophene
can be used to generate the lithiated intermediate. Trans-
metalation to the copper species is then facilitated by first
reacting with ZnCl2, followed by CuCl2.24 Oxidative coupling
of the copper intermediate is assisted with the addition of
dry O2 to produce 1 in high yield (85-90%) via this one-
pot method. It should be acknowledged that during the
preparation of this manuscript, a related synthesis of 1 from
3-bromothiophene and LDA was reported.9 However, with-
out the additional modifications to the oxidative coupling
steps, yields were still limited to 73%.
The new family of N-acylDTPs (2a-e) was prepared via
copper-catalyzed amidation21 of 3,3′-dibromo-2,2′-bithiophene
(1) as shown in Scheme 1. After our initial introduction of
the preparation of DTPs via Pd-catalyzed amination of
3-bromothiophene,3 other groups reported variant routes
utilizing 1 as an intermediate.22 As 1 is commonly produced
in moderate yield (60-75%) via the lithiation and oxidative
Cu-coupling of 2,3-dibromothiophene,23 its use increases the
material cost of the resulting DTPs. Thus, to improve the
(7) Liu, J.; Zhang, R.; Sauve, G.; Kowalewski, T.; McCullough, R. D.
J. Am. Chem. Soc. 2008, 130, 13167.
(8) (a) Zhang, W.; Li, J.; Zhang, B.; Qin, J. Macromol. Rapid Commun.
2008, 29, 1603. (b) Zhang, W.; Li, J.; Zou, L.; Zhang, B.; Qin, J.; Lu, Z.;
Poon, Y. F.; Chan-Park, M. B.; Li, C. M. Macromolecules 2008, 41, 8953.
(9) Mishra, S. P.; Palai, A. K.; Srivastava, R.; Kamalasanan, M. N.;
Patri, M. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6514.
(10) (a) Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.;
Tajima, K.; Yang, C.; Hashimoto, K. Macromolecules 2008, 41, 8302. (b)
Zhou, E.; Yamakawa, S.; Tajima, K.; Yang, C.; Hashimoto, K. Chem. Mater.
2009, 21, 4055. (c) Nakamura, M.; Yang, C.; Zhou, E.; Tajima, K.;
Hashimoto, K. ACS Appl. Mater. Interfaces 2009, 1, 2703. (d) Zhou, E.;
Wei, Q.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K.
Macromolecules 2010, 43, 821. (e) Zhou, E.; Tajima, K.; Yang, C.;
Hashimoto, K. J. Mater. Chem. 2010, 20, 2362.
With good access to 1, the production of N-acylDTPs was
then investigated utilizing Cu-catalyzed tandem C-N bond
formation methods developed by Buchwald.21b These meth-
ods had previously been successful in the production of the
isomeric dithieno[2,3-b:3′,2′-d]pyrrole and thus looked prom-
ising for the production of DTPs. The initial application of
the previously reported conditions successfully produced the
desired DTP 2b but only in 19% yield. While a variety of
reaction conditions were investigated (Supporting Informa-
tion, Table S1), the only condition that enhanced product
yield was the increase of catalyst loading to 10 mol %,
resulting in isolated yields of ca. 40%. Further increases in
the amount of catalyst did not improve product yields, and
at this time, it is not clear what is limiting product formation.
No significant side products are observed, and all unreacted
1 can be completely recovered. However, further production
of 2a stops at ca. 40%, even with the addition of further
fresh catalyst, leading us to suspect that the product itself is
inhibiting the catalyst. In fact, the addition of N-acylDTP
product to the initial reactant/catalyst mixture results in little
to no product under the standard conditions discussed above.
Similar inhibition has been previously observed in the Cu-
catalyzed amination of bromothiophenes.25 Attempts to apply
alternate Pd-catalyzed methods have not been successful.
The structures of three N-acylDTPs were examined via
X-ray crystallography and selected bond lengths are given
(11) Zhang, S.; Guo, Y.; Fan, H.; Liu, Y.; Chen, H.-Y.; Yang, G.; Zhan,
X.; Liu, Y.; Li, Y.; Yang, Y. J. Polym. Sci., Part A: Polym. Chem. 2009,
47, 5498.
(12) Yue, W.; Zhao, Y.; Shao, S.; Tian, H.; Xie, Z.; Geng, Y.; Wang,
F. J. Mater. Chem. 2009, 19, 2199.
(13) Zhan, X.; Tan, Z.; Zhou, E.; Li, Y.; Misra, R.; Grant, A.; Domercq,
B.; Zhang, X.-H.; An, Z.; Zhang, X.; Barlow, S.; Kippelen, B.; Marder,
S. R. J. Mater. Chem. 2009, 19, 5794. (b) Steckler, T. T.; Zhang, X.; Hwang,
J.; Honeyager, R.; Ohira, S.; Zhang, X.; Grant, A.; Ellinger, S.; Odom,
S. A.; Sweat, D.; Tanner, D. B.; Rinzler, A. G.; Barlow, S.; Bre´das, J.-L.;
Kippelen, B.; Marder, S. R.; Reynolds, J. R. J. Am. Chem. Soc. 2009, 131,
2824. (c) Zhang, X.; Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage,
W. J., Jr.; Tiwari, S. P.; Coppee, S.; Ellinger, S.; Barlow, S.; Bredas, J.-L.;
Kippelen, B.; Reynolds, J. R.; Marder, S. R. J. Mater. Chem. 2010, 20,
123.
(14) Price, S. C.; Stuart, A. C.; You, W. Macromolecules 2010, 43, 797.
(15) Radke, K. R.; Ogawa, K.; Rasmussen, S. C. Org. Lett. 2005, 7,
5253.
(16) (a) Parameswaran, M.; Balaji, G.; Jin, T. M.; Vijila, C.; Vaduku-
mpully, S.; Furong, Z.; Valiyaveettil, S. Org. Electronics 2009, 10, 1534.
(b) Balaji, G.; Parameswaran, M.; Jin, T. M.; Vijila, C.; Furong, Z.;
Valiyaveettil, S. J. Phys. Chem. C 2010, 114, 4628.
(17) Barlow, S.; Odom, S. A.; Lancaster, K.; Getmanenko, Y. A.; Mason,
R.; Coropceanu, V.; Bre´das, J.-L.; Marder, S. R. J. Phys. Chem. B 2010,
ASAP (DOI: 10.1021/jp100774r).
(18) Odom, S. A.; Lancaster, K.; Beverina, L.; Lefler, K. M.; Thompson,
N. J.; Coropceanu, V.; Bre´das, J.-L.; Marder, S. R.; Barlow, S. Chem.sEur.
J. 2007, 13, 9637.
(22) (a) Nozaki, K.; Takahashi, K.; Nakano, K.; Hiyama, T.; Tang, H.-
Z.; Fujiki, M.; Yamaguchi, S.; Tamaoand, K. Angew. Chem., Int. Ed. 2003,
42, 2051. (b) Koeckelberghs, G.; De Cremer, L.; Vanormelingen, W.;
Dehaen, W.; Verbiest, T.; Persoons, A.; Samyn, C. Tetrahedron 2005, 61,
687.
(19) Pappenfus, T. M.; Hermanson, B. J.; Helland, T. J.; Lee, G. G. W.;
Drew, S. M.; Mann, K. R.; McGee, K. A.; Rasmussen, S. C. Org. Lett.
2008, 10, 1553.
(23) (a) Gronowitz, S.; Hornbeldt, A.-B. Thiophenes; Elsevier: Oxford,
2004; p 747. (b) Gronowitz, S. Acta Chem. Scand. 1961, 15, 1393. (c)
Dahlmann, U.; Neidlein, R. HelV. Chim. Acta 1996, 79, 755.
(24) Kabir, S. M. H.; Miura, M.; Sasaki, S.; Harada, G.; Kuwatani, Y.;
Yoshida, M.; Iyoda, M. Heterocycles 2000, 52, 761.
(20) Wong, H.-L.; Ko, C.-C.; Lam, W. H.; Zhu, N.; Yam, V. W.-W.
Chem.sEur. J. 2009, 15, 10005.
(21) (a) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2002, 124, 7421. (b) Mart´ın, R.; Larsen, C. H.; Cuenca, A.; Buchwald,
S. L. Org. Lett. 2007, 9, 3379.
(25) Lu, Z.; Twieg, R. J. Tetrahedron 2005, 61, 9–3.
Org. Lett., Vol. 12, No. 18, 2010
4055