7 Ley’s early report also provided inspiration for other researchers, see:
A. J. A. Cobb, D. A. Longbottom, D. M. Shaw and S. V. Ley, Chem.
Commun., 2004, 1808–1809.
ketone or aldehyde (5.00 equiv.). The reactions were performed
at room temperature and monitored by HPLC and/or TLC. At
the indicated reaction time (see Table 3) the reaction was concen-
trated (low vacuum, then short exposure to high vacuum) and
the resulting crude Michael product was purified by column
chromatography. 4b–d are new compounds and have been fully
characterized in the ESI.†
8 For a representative list of the top performing catalysts for cyclopenta-
none, see: (a) S. Chandrasekhar, T. P. Kumar, K. Haribabu, C. R. Reddy
and C. R. Kumar, Tetrahedron: Asymmetry, 2011, 22, 697–702;
(b) T. Mandal and C.-G. Zhao, Angew. Chem., Int. Ed., 2008, 47, 7714–
7717; (c) S. Luo, J. Li, L. Zhang, H. Xu and J.-P. Cheng, Chem.–Eur. J.,
2008, 14, 1273–1281; (d) D.-Q. Xu, L.-P. Wang, S.-P. Luo, Y.-F. Wang,
S. Zhang and Z.-Y. Xu, Eur. J. Org. Chem., 2008, 1049–1053;
(e) S. Chandrasekhar, B. Tiwari, B. B. Parida and C. R. Reddy, Tetra-
hedron: Asymmetry, 2008, 19, 495–499; (f) T. Mandal and C.-G. Zhao,
Tetrahedron Lett., 2007, 48, 5803–5806; (g) Y. Xiong, Y. Wen, F. Wang,
B. Gao, X. Liu, X. Huang and X. Feng, Adv. Synth. Catal., 2007, 349,
2156–2166; (h) S. Luo, H. Xu, X. Mi, J. Li, X. Zheng and J.-P. Cheng,
J. Org. Chem., 2006, 71, 9244–9247; (i) N. Mase, K. Watanabe,
H. Yoda, K. Takabe, F. Tanaka and C. F. Barbas, J. Am. Chem. Soc.,
2006, 128, 4966–4967; ( j) C.-L. Cao, M.-C. Ye, X.-L. Sun and Y. Tang,
Org. Lett., 2006, 8, 2901–2904; (k) S. Luo, X. Mi, L. Zhang,
S. Liu, H. Xu and J.-P. Cheng, Angew. Chem., Int. Ed., 2006, 45,
3093–3097.
9 For some of the top reported results (cyclohexanone addition to β-nitro-
styrene), see ref. 8a,d,f and (a) S. Anwar, P.-H. Lee, T.-Y. Chou,
C. Chang and K. Chen, Tetrahedron, 2011, 76, 1171–1177; (b) B. Ni,
Q. Zhang, K. Dhungana and A. D. Headley, Org. Lett., 2009, 11, 1037–
1040; (c) P. Li, L. Wang, Y. Zhang and G. Wang, Tetrahedron, 2008,
7633–7638; (d) G. Lv, R. Jin, W. Mai and L. Gao, Tetrahedron: Asymme-
try, 2008, 19, 2568–2572; (e) S. Luo, J. Li, L. Zhang, H. Xu and
J.-P. Cheng, Chem.–Eur. J., 2008, 14, 1273–1281; (f) B. Ni, Q. Zhang
and A. D. Headley, Tetrahedron Lett., 2008, 1249–1252;
(g) S. V. Pansare and K. Pandya, J. Am. Chem. Soc., 2006, 128, 9624–
9625; (h) T. Ishii, S. Fujioka, Y. Sekiguchi and H. Kotsuki, J. Am. Chem.
Soc., 2004, 31, 9558–9559.
General procedure for enantioselctive aldol reactions
The (S)-PicAm-1/2,4-dinitrobenzenesulfonic acid 1 : 1 salt (MW
= 550.58, 0.035 mmol, 7.0 mol%) was added to a mixture of the
aldehyde (0.5 mmol, 1.0 equiv.) and ketone (1.65 mmol, 3.3
equiv.) in distilled water (1.0 mL), the reaction mixture was
stirred at 45 °C for the specified reaction time (see Table 4).
Note, the aldol products, in particular, are prone to α-epimeriza-
tion, do not extend the reaction times. Work-up: add EtOAc and
H2O, extract with EtOAc (15 mL × 3). The combined organic
extracts were dried (Na2SO4), evaporated (Rot Vap), and high
vacuum dried. 1H NMR of the crude product allowed the dr
assessment. The crude sample was then purified by chromato-
graphy (petroleum ether/EtOAc) for yield and ee assessment. 9c
is a new aldol compound and has been fully characterized in the
ESI.†
10 S. Bahmanyar and K. N. Houk, J. Am. Chem. Soc., 2001, 123, 11273–
11283 and references cited therein.
11 For example, see: T.-Y. Liu, H.-L. Cui, Y. Zhang, K. Jiang, W. Du,
Z.-Q. He and Y.-C. Chen, Org. Lett., 2007, 9, 3671–3674.
Acknowledgements
We are grateful for financial support from Jacobs University
Bremen and the Higher Education Commission of Pakistan via
the University of Malakand and Kohat University of Science and
Technology. We also thank Professor Nikolai Kuhnert for MS/
HRMS measurements (Jacobs University Bremen). This work
has been performed within the graduate program of Nanomole-
cular Science at Jacobs University Bremen.
12 For example, see: (a) T. Mandal and C.-G. Zhao, Angew. Chem., Int. Ed.,
2008, 47, 7714–7717; (b) S. H. McCooey and S. J. Connon, Org. Lett.,
2007, 9, 599–602; (c) M. P. Lalonde, Y. Chen and E. N. Jacobsen,
Angew. Chem., Int. Ed., 2006, 45, 6366–6370.
13 For our initial report on this template, see: T. C. Nugent, M. N. Umar and
A. Bibi, Org. Biomol. Chem., 2010, 8, 4085–4089.
14 For a 2-picolylamine based pyrrolidine catalyst (aldol reaction), see struc-
ture 2a within: T. J. Dickerson and K. D. Janda, J. Am. Chem. Soc., 2002,
124, 3220–3221.
15 For
a 3-picolylamine based pyrrolidine catalyst, see ref. 14 and
A. Córdova, W. Notz and C. F. Barbas III, Chem. Commun., 2002, 3024–
3025.
16 For 1,3- and 1,4-pyrrolidine-pyridines, for cyclic ketone and aldehyde
additions to β-nitrostyrene, see ref. 9h.
17 For a 2,6-bis(pyrrolidine-triazole) substituted pyridine Michael catalyst
(cyclohexanone additions to β-nitrostyrene derivatives), see:
T. Karthikeyan and S. Sankararaman, Tetrahedron: Asymmetry, 2008, 19,
2741–2745.
18 (a) G. Alvaro, G. Martelli and D. Savoia, J. Chem. Soc., Perkin Trans. 1,
1998, 775–783; (b) Y. H. Chiu, O. D. Santos and J. W. Canary, Tetra-
hedron, 1999, 55, 12069–12078; (c) G. Chelucci, S. Baldino, S. Chessa,
G. A. Pinna and F. Socccolini, Tetrahedron: Asymmetry, 2006, 17, 3163–
3169.
19 For related research, see: (a) F. Shibahara, R. Sugiura, E. Yamaguchi,
A. Kitagawa and T. Murai, J. Org. Chem., 2009, 74, 3566–3568;
(b) F. Felluga, W. Baratta, L. Fanfoni, G. Pitacco, P. Rigo and
F. Benedetti, J. Org. Chem., 2009, 74, 3547–3550; (c) V. Terrasson,
S. Marque, A. Scarpacci and D. Prim, Synthesis, 2006, 1858–1862;
(d) D. M. Spero and S. R. Kapadia, J. Org. Chem., 1997, 62, 5537–
5541.
20 Other reports exist in which similar effects have been previously reported.
For example, see: S. Luo, H. Xu, J. Li, L. Zhang, X. Mi, X. Zheng and
J.-P. Cheng, Tetrahedron, 2007, 63, 11307–11314.
21 (a) V. G. Saraswathy and S. Sankararaman, J. Org. Chem, 1995, 60B,
5024–5028; (b) M. C. Moorjani and g. K. Trivedi, Indian J. Chem, 1978,
16, 405–410.
22 See for example, ref. 3a and: (a) T. C. Nugent, M. Shoaib and A. Shoaib,
Org. Biomol. Chem., 2011, 9, 52–56; (b) M. Yoshida, A. Sato and
Notes and references
1 For representative reviews, see: (a) L. Zhang and S. Luo, Synlett, 2012,
1575–1589; (b) B. M. Trost and C. S. Brindle, Chem. Soc. Rev., 2010,
39, 1600–1632; (c) J. Paradowska, M. Stodulski and J. Mlynarski,
Angew. Chem., Int. Ed., 2009, 48, 4288–4297; (d) Z. Zhang and
P. R. Schreiner, Chem. Soc. Rev., 2009, 38, 1187–1198; (e) H. Kotsuki,
H. Ikishima and A. Okuyama, Heterocycles, 2008, 75, 493–529;
(f) H. Kotsuki, H. Ikishima and A. Okuyama, Heterocycles, 2008, 75,
757–797; (g) M. S. Taylor and E. N. Jacobsen, Angew. Chem., Int. Ed.,
2006, 45, 1520–1543.
2 For a very current example of the enzyme–organocatalysis relationship,
see: J. Paradowska, M. Pasternak, B. Gut, B. Gryzlo and J. Mlynarski,
J. Org. Chem., 2012, 77, 173–187.
3 (a) N. Mase, R. Thayumanavan, F. Tanaka and C. F. Barbas III, Org.
Lett., 2004, 6, 2527–2530; (b) O. Andrey, A. Alexakis, A. Tomassini and
G. Bernardinelli, Adv. Synth. Catal., 2004, 346, 1147–1168.
4 For a recent exception, see: (a) T. C. Nugent, A. Sadiq, A. Bibi, T. Heine,
L. L. Zeonjuk, N. Vankova and B. S. Bassil, Chem.–Eur. J., 2012, 18,
4088–4098.
5 For early examples of cyclopentanone and aldehyde addition to β-nitro-
styrene, see: (a) J. M. Betancort, K. Sakthivel, R. Thayumanavan and
C. F. Barbas III, Tetrahedron Lett., 2001, 42, 4441–4444;
(b) J. M. Betancort and C. F. Barbas III, Org. Lett., 2001, 3, 3737–3740.
6 For a very early example of acetone and cyclohexanone addition to aro-
matic aldehydes, see: M. Nakadai, S. Saito and H. Yamamoto, Tetra-
hedron, 2002, 58, 8167–8177.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 9287–9294 | 9293