pubs.acs.org/joc
methodologies to functionalized thiazoles with selective
Brønsted Acid Catalyzed Cyclization of Propargylic
Alcohols with Thioamides. Facile Synthesis of Di- and
Trisubstituted Thiazoles
control of substitution patterns are still needed. This is all
the more so if it can be accomplished with low cost and
readily available starting materials and catalysts that follow
the principles of atom economy.5 One such synthetic strategy
has been to replace the electrophile in these reactions with a
propargylic alcohol in the presence of a Lewis acid catalyst.4,6
According to the seminal reports by the groups of Zhan4a
and Yoshimatsu,4b these catalytic systems are thought
to proceed via either an allenic or propargylic cationic
species that underwent the [3 þ 2] cycloaddition process.
Although shown to be efficient, producing H2O as poten-
tially the only byproduct, this was countered by the like-
lihood of forming metal impurities that lessened the poten-
tial of this approach for scale-up applications. Added to this
is a substrate scope that is limited to ones containing func-
tional groups that cannot take part in strong metal co-
ordination. In this regard, we reasoned that these drawbacks
could be readdressed by developing a Brønsted acid-cata-
lyzed version of this regioselective thiazole forming reac-
tion. An inexpensive and commercially available reagent
class that has a high tolerance to air and moisture, Brønsted
acids have been shown to mediate a wide variety of organic
transformations in an efficient and selective manner.7-9
Recently, this has included stereoselective C-X (X = C,
N, O, S) bond formation strategies that combine the use of
Brønsted acid catalysis with alcohol pro-electrophiles such
as allylic, benzylic, and propargylic alcohols.8,9 For example,
we recently reported TfOH to be a highly efficient catalyst
Xiaoxiang Zhang, Wan Teng Teo, Sally, and
Philip Wai Hong Chan*
Division of Chemistry and Biological Chemistry, School of
Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637616, Singapore
Received June 30, 2010
A general and efficient method to prepare 2,4-di- and
trisubstituted thiazoles via p-TsOH H2O-catalyzed cycli-
3
zation of trisubstituted propargylic alcohols with thioa-
mides is described. The reaction was accomplished in
moderate to excellent product yields under mild condi-
tions that did not require the exclusion of air and moisture
and offers an operationally simplistic and convenient
route to this synthetically useful aromatic heterocycle.
(2) For selected recent examples, see: (a) Shi, B.; Blake, A. J.; Lewis, W.;
Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152.
(b) Thomae, D.; Perspicace, E.; Xu, Z.; Henryon, D.; Schneider, S.; Hesse, S.;
Kirsch, G.; Seck, P. Tetrahedron 2009, 65, 2982. (c) Kaleta, Z.; Makowski,
ꢀ
B. T.; Soos, T.; Dembinski, R. Org. Lett. 2006, 8, 1625. (d) Kazmaier, U.;
Ackermann, S. Org. Biomol. Chem. 2005, 3, 3184. (e) Shao, J.; Panek, J. S.
Org. Lett. 2004, 6, 3083. (f) Rivkin, A.; Cho, S. S.; Gabarda, A. E.;
Yoshimura, F.; Danishefsky, S. J. J. Nat. Prod. 2004, 67, 139. (g) Ganesh,
T.; Schilling, J. K.; Palakodety, R. K.; Ravindra, R.; Shanker, N.; Bane, S.;
Kingston, D. G. I. Tetrahedron 2003, 59, 9979. (h) DeRoy, P. L.; Charette,
A. B. Org. Lett. 2003, 5, 4163. (i) Williams, D. R.; Patnaik, S.; Clark, M. P.
J. Org. Chem. 2001, 66, 8463. (j) Bach, T.; Heuser, S. Angew. Chem., Int. Ed.
2001, 40, 3184. (k) Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.;
Debitus, C.; Gomez-Paloma, L.; Riccio, R. Eur. J. Org. Chem. 2001, 775.
(3) Hantzsch, A.; Weber, J. H. Ber. Dtsch. Chem. Ges. 1887, 20, 3118.
(4) (a) Gao, X.; Pan, Y.; Lin, M.; Chen, L.; Zhan, Z.-P. Org. Biomol.
Chem. 2010, 8, 3259. (b) Yoshimatsu, M.; Yamamoto, T.; Sawa, A.; Kato, T.;
Tanabe, G.; Muraoka, O. Org. Lett. 2009, 11, 2952.
Thiazoles are important structural moieties found in many
natural products and compounds of current biological and
material interest as well as versatile building blocks in
organic synthesis.1-4 Among the myriad reactions devoted
to the construction of this aromatic heterocycle,1-4 the most
often relied upon synthetic method is the Hantzsch thiazole
synthesis,3 which makes use of R-halo ketones and thioa-
mides as the substrates. While recent efforts have led to a
number of advances made in the development of this
reaction,1,4 the establishment of more versatile and flexible
(5) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M. Science
1991, 254, 1471.
(6) For reviews on the use of alcohols as pro-electrophiles, see:
(a) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501. (b) Ljungdahl,
N.; Kann, N. Angew. Chem., Int. Ed. 2009, 48, 642. (c) Muzart, J. Tetrahedron
2008, 64, 5815. (d) Muzart, J. Eur. J. Org. Chem. 2007, 3077. (e) Muzart, J.
Tetrahedron 2005, 61, 4179. (f) Tamaru, Y. Eur. J. Org. Chem. 2005, 2647.
(7) For recent reviews, see: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744.
(b) Busca, G. Chem. Rev. 2007, 107, 5366. (c) Shao, L.-X.; Shi, M. Curr. Org.
Chem. 2007, 11, 1135. (d) Yamamoto, H. Tetrahedron 2007, 63, 8377.
(e) Yamamoto, H.; Boxer, M. B. Chimia 2007, 61, 279. (f) Ishihara, K.;
Yamamoto, H. In New Frontiers in Asymmetric Catalysis; Mikami, K.,
Lautens, M., Eds.; John Wiley & Sons: New York, 2007; p 359. (g) Enders,
D.; Grondal, C.; Huettl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.
(h) Yamamoto, H. In Asymmetric Synthesis; Christmann, M., Braese, S.,
Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2007; p 153.
(i) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
(j) Connon, S. J. Chem.;Eur. J. 2006, 12, 5418. (k) Akiyama, T.; Itoh, J.;
Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(1) For selected reviews, see: (a) Jin, Z. Nat. Prod. Rep. 2009, 26, 382.
(b) Chen, B.; Heal, W. Five-Membered Rings with Two Heteroatoms, Each
with Their Fused Carbocyclic Derivatives. In Comprehensive Heterocyclic
Chemistry III; Katrizky, R., Rees, C. W., Scriven, E. F. V., Taylor, R. J. K.,
Eds.; Pergamon: New York, 2008; Vol. 4, p 635. (c) Wu, Y.-J.; Yang, B. V.
Five-Membered Ring Systems: With N and S (Se, Te) Atoms. In Progress in
Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford,
2007; Vol. 18, p 247. (d) Mustafa, S. M.; Nair, V. A.; Chittoor, J. P.;
ꢀ
Krishnapillai, S. Mini-Rev. Org. Chem. 2004, 1, 375. (e) Jagodzinski, T. S.
Chem. Rev. 2003, 103, 197. (f) Eicher, T.; Hauptmann, S. The Chemistry of
Heterocycles: Structures, Reactions, Synthesis, and Applications, 2nd ed.;
Wiley-VCH: Weinheim, 2003. (g) Wipf, P. Chem. Rev. 1995, 95, 2115.
6290 J. Org. Chem. 2010, 75, 6290–6293
Published on Web 08/26/2010
DOI: 10.1021/jo101292r
r
2010 American Chemical Society