P. Surendra Reddy et al. / Tetrahedron Letters 51 (2010) 4037–4041
4041
Table 4
88, 297; (d) Hassner, A. In Azides and Nitrenes; Scriven, E. F. V., Ed.; Academic:
New York, NY, 1984.
One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from different terminal alkynes
and homoallylic alcohol (1) using PdCl2 and Cu(I) catalystsa
3. (a) Feldman, A. K.; Colasson, B.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc.
2005, 127, 13444; (b) Mangelinckx, S.; Boeykens, M.; Vliegen, M.; Van der
Eycken, J.; De Kimpe, N. Tetrahedron Lett. 2005, 46, 525; (c) Cardillo, G.;
Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Piccinelli, F.; Tolomelli, A. Org. Lett.
2005, 7, 533; (d) Takasu, H.; Tsuji, Y.; Sajiki, H.; Hirota, K. Tetrahedron 2005, 61,
11027; (e) Khanetskyy, B.; Dallinger, D.; Kappe, C. O. J. Comb. Chem. 2004, 6,
884; (f) Papeo, G.; Posteri, H.; Vianello, P.; Varasi, M. Synthesis 2004, 2886.
4. (a) Trost, B. M.; Pulley, S. R. Tetrahedron Lett. 1995, 36, 8737; (b) Trost, B. M.;
Cook, G. R. Tetrahedron Lett. 1996, 37, 7485; (c) Capaccio, C. A. I.; Varela, O.
Tetrahedron: Asymmetry 2000, 11, 4945; (d) Cleophax, J.; Olesker, A.; Rolland,
A.; Gero, S. D.; Forchioni, A. Tetrahedron 1977, 33, 1303; (e) Hu, T.; Panek, J. S. J.
Am. Chem. Soc. 2002, 124, 11368; (f) Askin, D.; Angst, C.; Danishefsky, S. J. J. Org.
Chem. 1985, 50, 5005; (g) Lauzon, S.; Tremblay, F.; Gagnon, D.; Godbout, C.;
Chabot, C.; Shanks, C. M.; Perreault, S.; Deseve, H.; Spino, C. J. Org. Chem. 2008,
73, 6239; (h) Gagnon, D.; Lauzon, S.; Godbout, C.; Spino, C. Org. Lett. 2005, 7,
4769.
N
1
2
85
87
Ph
Ph
Ph
N
N
N
N
N
N
N
N
3
4
85
80
5. (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057; (b)
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596.
N
N
Ph
Ph
N
N
6. For representative applications of the Cu(I)-catalyzed azide–alkyne
cycloaddition, see: (a) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.;
Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192; (b) Speers, A.
E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125, 4686; (c) Anderson, J.
C.; Schultz, P. G. J. Am. Chem. Soc. 2003, 125, 11782; (d) Link, A. J.; Tirrell, D. A. J.
Am. Chem. Soc. 2003, 125, 11164; (e) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E.
D. Langmuir 2004, 20, 1051; (f) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C.
J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 30, 3928.
F
F
N
N
5
56
NO2
O2N
7. Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960, 82, 5956.
8. (a) Fava, C.; Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry 2001,
12, 2731; (b) Kawabata, H.; Kubo, S.; Hayashi, M. Carbohydr. Res. 2001, 333,
153; (c) Goksu, S.; Ozalp, C.; Seçen, H.; Sutbeyaz, Y.; Saripinar, E. Synthesis 2004,
2849; (d) Gagnon, D.; Lauzon, S.; Godbout, C.; Spino, C. Org. Lett. 2005, 7, 4769.
9. (a) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297; (b) Ju, Y.; Kumar, D.;
Varma, R. S. J. Org. Chem. 2006, 71, 6697; (c) Sa, M. M.; Ramos, M. D.; Fernandes,
L. Tetrahedron 2006, 62, 11652; (d) Ollivier, C.; Renaud, P. J. Am. Chem. Soc.
2001, 123, 4717.
10. (a) Hassner, A.; Fibiger, R.; Andisik, D. J. Org. Chem. 1984, 49, 4237; (b) Breton,
G. W.; Daus, K. A.; Kropp, P. J. J. Org. Chem. 1992, 57, 6646; (c) Sreekumar, R.;
Padmakumar, R.; Rugmini, P. Chem. Commun. 1997, 1133.
11. Tan, J.; Zhang, Z.; Wang, Z. Org. Biomol. Chem. 2008, 6, 1344.
12. (a) Sreedhar, B.; Reddy, P. S.; Kumar, N. S. Tetrahedron Lett. 2006, 47, 3055; (b)
Sreedhar, B.; Reddy, P. S. Synth. Commun. 2007, 37, 805; (c) Sreedhar, B.; Reddy,
P. S.; Krishna, V. R. Tetrahedron Lett. 2007, 48, 5831–5834; (d) Reddy, P. S.;
Sreedhar, B. Synthesis 2009, 4203.
N
N
N
6
7
8
9
75
80
70
75
Ph
Ph
Ph
Ph
N
N
N
N
N
OH
HO
N
N
N
N
HO
N
N
HO
13. (a) Sen, A.; Lai, T. W. Inorg. Chem. 1984, 23, 3257; (b) Sen, A.; Lai, T. W. Inorg.
Chem. 1981, 20, 4036; (c) Yu, J.; Gaunt, M. J.; Spencer, J. B. J. Org. Chem. 2002, 67,
4627.
Reaction conditions as exemplified in typical experimental procedure.21
a
14. Hartley, F. R. The Chemistry of Platinum and Palladium; Wiley: New York, 1973.
15. Sen, A.; Lai, T. W. J. Am. Chem. Soc. 1981, 103, 4627.
16. Schrock, R. R.; Parshall, G. W. Chem. Rev. 1976, 76, 243.
Acknowledgments
17. (a) McGrath, D. C.; Grubbs, R. H. Organometallics 1994, 13, 224; (b) Cadierno, V.;
Garrido, S. E. G.; Gimeno, J.; Alvarez, A. V.; Sordo, J. J. Am. Chem. Soc. 2006, 128,
1360; (c) Uma, R.; Crevisy, C.; Gree, R. Chem. Rev. 2003, 103, 27.
18. The ratio was determined by 1H NMR and spectra is given in the
Supplementary data.
19. Lee, B. Y.; Park, S. R.; Jeon, H. B.; Kim, K. S. Tetrahedron Lett. 2006, 47, 5105.
20. Typical procedure for the hydroazidation of homoallyl alcohols: a mixture of
homoallyl alcohol (1 mmol), TMSN3 (1.5 mmol), and palladium chloride
(3 mol %) in dichloromethane (3 mL) was stirred at room temperature for
3 h. After completion of the reaction, as indicated by TLC, the reaction mixture
was diluted with water and extracted with dichloromethane (2 Â 10 mL). The
combined organic layers were dried over anhydrous Na2SO4, concentrated in
vacuo, and purified by column chromatography on silica gel to afford the pure
product.
P.S.R. thanks the Council of Scientific and Industrial Research,
New Delhi for the award of Senior Research Fellowship and V.R.
thanks Indo French Centre for the Promotion of Advanced Research
(IFCPAR), New Delhi for financial assistance.
Supplementary data
Supplementary data associated with this article can be found, in
21. Typical procedure for the one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles
from homoallyl alcohols: a mixture of homoallyl alcohol (1 mmol), TMSN3
(1.5 mmol), and palladium chloride (3 mol %) in dichloromethane (3 mL) was
stirred at room temperature for 3 h, and the reaction was monitored by TLC.
Phenylacetylene (1.2 mmol), CuI (5 mol %) and water (2 mL) were added and
the reaction mixture was stirred at room temperature for 6 h. After completion
of the reaction (as monitored by TLC), the reaction mixture was filtered
through Celite and the product was extracted with dichloromethane
(2 Â 10 mL). After removing the solvent under vacuum, the crude product
was purified by column chromatography on silica gel using (hexane–ethyl
acetate) to afford pure product. All products were characterized by IR, 1H NMR,
13C NMR and mass spectroscopic techniques. Please see Supplementary data
for spectral data of all compounds.
References and notes
1. (a) Kibayashi, C. Chem. Pharm. Bull. 2005, 53, 1375; (b) Brown, B. R. The Organic
Chemistry of Aliphatic Nitrogen Compounds; Oxford University Press: New York,
1994; (c) Ricci, A. Modern Amination Methods; Wiley-VCH: Weinheim,
Germany, 2000; (d) Roesky, P. W.; Muller, T. E. Angew. Chem., Int. Ed. 2003,
42, 2708; (e) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc.
2004, 126, 15378; (f) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125,
14286; (g) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J.
Am. Chem. Soc. 2005, 127, 2868.
2. (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005,
44, 5188; (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596; (c) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988,