Journal of Materials Chemistry A
Please do not adjust margins
Page 8 of 9
Journal of Materials Chemistry A
Paper
were calculated by convolution of the EQE measurements with for simultaneous measurement of current and voltage during
DOI: 10.1039/C5TA10459A
the AM1.5G solar spectrum.
water splitting.
EQE measurements were performed in a homebuilt set‐up.
Mechanically modulated (SR 540, Stanford Research)
monochromatic (Oriel Cornerstone 130) light from a 50 W
tungsten halogen lamp (Osram 64610) was used as a probe light
together with continuous bias light from a solid state laser
(B&W Tek Inc., λ = 532 nm, 30 mW) through an aperture of 2
mm diameter. The intensity of the bias laser was adjusted using
a variable neutral density filter. The response was recorded
using a lock‐in amplifier (Stanford Research Systems SR830),
over a resistance of 50 Ω. For all the single junction devices, the
measurement was carried out under representative
illumination intensity (AM1.5G equivalent, provided by the 532
nm laser). A calibrated silicon solar cell was used as reference.
Devices were kept behind a quartz window in a nitrogen filled
box during the measurements.
Solar to hydrogen conversion efficiencies were determined
using a home‐built setup. As the water splitting experiments
took place in air, the solar cells were kept behind a quartz
window in a nitrogen filled box and connected to the catalysts
through external cables. The solar cell was illuminated with
white‐light from a tungsten‐halogen lamp (~100 mW cm‐2)
filtered by a Schott GG385 UV filter and a Hoya HMC 80A 72 mm
daylight filter. The solar cell was positioned by assuring that the
short‐circuit current in this setup corresponds to AM1.5G power
standards. A Keithley 2600 source‐measurement unit was used
Optical Simulations
The optical modelling was done in SetFos version 3.2 (Fluxim
AG, Switzerland). The optical constants for PTPTIBDT‐
OD:[70]PCBM were determined from reflection/transmission
measurements on active layers on quartz.
Acknowledgements
This project was carried out within the research programme of
BioSolarCells, co‐financed by the Dutch Ministry of Economic
Affairs. This work is part of the research programme of the
Foundation for Fundamental Research on Matter (FOM), which
is part of the Netherlands Organization for Scientific Research
(NWO). The research leading to these results has further
received funding from the European Research Council under the
European Union's Seventh Framework Programme (FP/2007‐
2013) / ERC Grant Agreement No. 339031 and the Mujulima
project, Grant Agreement No. 604148. The research is part of
the Solliance OPV programme and received funding from the
Ministry of Education, Culture, and Science (NWO Gravity
program 024.001.035).
Funct. Mater., 2013, 23, 885−892.
14 Y. Liu, C.‐C. Chen, Z. Hong, J. Gao, Y. M. Yang, H. Zhou, L. Dou,
Notes and references
G. Li and Y. Yang, Sci. Rep., 2013, 3, 3356/1−8.
1
2
3
4
M. Frites, W. B. Ingler Jr. and S. U. M. Khan, J. Technol. Innov.
Renew. Energy, 2014, , 6−11.
S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J.
J. H. Pijpers and D. G. Nocera, Science, 2011, 334, 645−648.
G. H. Lin, M. Kapur, R. C. Kainthla and J. O'M. Bockris, Appl.
Phys. Lett., 1989, 55, 386−387.
15 H. Zhou, Y. Zhang, C.‐K. Mai, S. D. Collins, G. C. Bazan, T.‐Q.
Nguyen and A. J. Heeger, Adv. Mater., 2015, 27, 1767–1773.
16 J. You, C.‐C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S.
3
Ye, J. Gao, G. Li and Y. Yang, Adv. Mater. 2013, 25
3973−3978.
,
17 J. Cao, Q. Liao, X. Du, J. Chen, Z. Xiao, Q. Zuo and L. Ding,
Energy Environ. Sci., 2013, , 3224−3228.
Y. Yamada, N. Matsuki, T. Ohmori, H. Mametsuka, M. Kondo,
6
A. Matsuda and E. Suzuki, Int. J. Hydrogen Energy, 2003, 28
1167−1169.
,
18 Q. Liao, J. Cao, Z. Xiao, J. Liao and L. Ding, Phys. Chem. Chem.
Phys., 2013, 15, 19990−19993.
19 M. K. Poduval, P. M. Burrezo, J. Casado, J. T. Lopez
Navarrete, R. P. Ortiz, T.‐and H. Kim, Macromolecules, 2013,
46, 9220−9230.
20 C. Zuo, J. Cao and L. Ding, Macromol. Rapid. Comm., 2014,
35, 1362−1366.
21 J. Gilot, M. M. Wienk and R. A. J. Janssen, Appl. Phys. Lett.,
2007, 90, 143512/1−3.
5
6
7
8
9
S. Esiner, H. van Eersel, M. M. Wienk and R. A. J. Janssen,
Adv. Mater., 2013, 25, 2932−2936.
S. Esiner, R. E. M. Willems, A. Furlan, W. Li, M. M. Wienk and
R. A. J. Janssen, J. Mater. Chem. A., 2015, 3, 23936–23945.
O. Khaselev, A. Bansal and J. A. Turner, Int. J. Hydrogen
Energy, 2001, 26, 127−132.
S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H.
Tributsch, Int. J. Hydrogen Energy, 2001, 26, 653−659.
D. J. D. Moet, P. de Bruyn, J. D. Kotlarski and P. W. M. Blom,
Org. Electron., 2010, 11, 1821−1827.
22 D. J. D. Moet, P. de Bruyn and P. W. M. Blom, Appl. Phys.
Lett., 2010, 96, 1535041/1−3.
23 Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy
and A. J. Heeger, Adv. Mater., 2011, 23, 2226–2230.
24 S. Kundu, S. R. Gollu, R. Sharma, S. Ga, A. Ashok, A.R.
Kulkarni and D. Gupta, Org. Electron., 2013, 14, 3083−3088.
25 A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C.
Bazan and A. J. Heeger, Adv. Mater., 2013, 25, 2397−2402.
26 J. Gilot, M. M. Wienk and R. A. J. Janssen, Adv. Mater., 2010,
10 C.‐Y. Chang, L. Zuo, H.‐L. Yip, C.‐Z. Li, Y. Li, C.‐S. Hsu, Y.‐J.
Cheng, H Chen and A. K.‐Y. Jen, Adv. Energy Mater., 2014, 4,
1301645.
11 L. Zuo, C.‐C. Chueh, Y.‐X. Xu, K.‐S. Chen, Y. Zang, C.‐Z. Li, H.
Chen and A. K.‐Y. Jen, Adv. Mater., 2014, 26, 6778−6784.
12 T. E. Kang, T. Kim, C. Wang, S. Yoo and B. J. Kim, Chem.
Mater., 2015, 27, 2653−2658.
13 J. Yuan, Z. Zhai, H. Dong, J. Li, Z. Jiang, Y. Li and W. Ma, Adv.
This journal is © The Royal Society of Chemistry 20xx
J. Mater. Chem. A., 2015, 00, 1‐3 | 7
Please do not adjust margins