4902
D. Ramesh et al. / Tetrahedron Letters 51 (2010) 4898–4903
Table 5 (continued)
Entry
Substrate 1
Substrate 2
Product 3
Time (h)
Yieldb(%)
63c
O
O
O
O
Ph
Ph
O
Ph
Ph
6
6
2g
1b
3t
O
O
O
Ph
Ph
3u
7
6
59c
S
S
2g
1e
a
Conditions: 0.2 mmol of 1, 1 mmol of 2, and 0.24 mmol of DDQ in nitromethane at 80 °C.
Isolated yield.
At 50 °C.
b
c
The benzylic C–H bond of diphenylmethane was reacted effi-
ciently with a range of 1,3-dicarbonyl compounds and the corre-
sponding products were obtained in excellent yields (Table 2,
entries 1–5). 1,3-Dicarbonyl compounds bearing aromatic ring with
both electron-donating and electron-withdrawing groups in para
position afforded excellent yields (Table 2, entries 1 and 3). Compar-
atively a low yield was obtained with 1,3-dicarbonyl substrates
bearing a naphthalene group (1d) (Table 2, entry 4), probably be-
cause of the steric effect of the naphthalene group. Hetero aryl such
as thienyl substrate (1e) was also found to react with diphenylme-
thane to give the desired product in good yield (Table 2, entry 5).
Substrates with less activated cyclic benzylic sp3 C–H bond such
as 1,2,3,4-tetrahydronaphthalene and acenaphthene were reacted
with various 1,3-dicarbonyl compounds and the desired products
were obtained in good yields (Table 3, entries 1–5). To explore the
generality of the reaction, we also examined the reactions of less
activated acyclic benzylic sp3 C–H bond substrates such as ethylben-
zene and para-ethylchlorobenzene with various 1,3-dicarbonyl
compounds and found that the reactions proceeded well and gave
the respective products in good yields (Table 4, entries 1–4).
Substrates with allylic sp3 C–H bond such as cyclohexene (2f)
and cyclopentene (2g) were subjected to alkylation with various
1,3-dicarbonyl compounds and afforded the desired products in
good yields (Table 5, entries 1–7). 1,3-Dicarbonyl compounds bear-
ing aromatic ring with both electron-donating and electron-with-
drawing groups in para position afforded good yields (Table 5,
entries 1, 3, and 5). Furthermore, hetero aryl dicarbonyl compound
(1e) also gave the desired products in good yields (Table 5, entries
4 and 7).
References and notes
1. (a)Beccalli, E. M.;Broggini, G.; Martinelli, M.;Sottocornola, S. Chem. Rev. 2007, 107,
5318–5365; (b) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107,
2725–2756; (c) Li, C. Chem. Rev. 2005, 105, 3095–3165; (d) Dilman, A. D.; Ioffe, S. L.
Chem. Rev. 2003, 103, 733–772; (e) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103,
169–196; (f) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731–1769; (g)
Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 137–202.
2. Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-
VCH: New York, 1998.
3. (a) Trost, B. M. Science 1991, 254, 1471–1477; (b) Trost, B. M. Angew. Chem., Int.
Ed. Engl. 1995, 34, 259–281; (c) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
4. (a) Winterton, N. Green Chem. 2001, 3, G73–G75; (b) Anastas, P. T.; Warner, J. C.
Green Chemistry Theory and Practice; Oxford University Press: New York, 1998.
5. (a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698–1712; (b) Naota, T.; Takaya,
H.; Murahashi, S. I. Chem. Rev. 1998, 98, 2599–2660; (c) Chatani, N.; Asaumi, T.;
Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123,
10935–10941; (d) Goossen, L. J. Angew. Chem., Int. Ed. 2002, 41, 3775–3778; (e)
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res.
1995, 28, 154–162; (f) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science
2000, 287, 1995–1997; (g) Goldman, A. S. Nature 1993, 366, 514; (h) Crabtree,
R. H. J. Organomet. Chem. 2004, 689, 4083–4091; (i) Jia, C.; Kitamura, T.;
Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633–639.
6. (a) Basle, O.; Li, C.-J. Green Chem. 2007, 9, 1047–1050; (b) Li, C.-J.; Li, Z. Pure
Appl. Chem. 2006, 78, 935–945; (c) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127,
6968–6969; (d) Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006,
128, 14220–14221; (e) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672–3673; (f)
Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173–3176; (g) DeBoef, B.; Pastine, S. J.;
Sames, D. J. Am. Chem. Soc. 2004, 126, 6556–6557.
7. (a) Wantanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 1759–1762;
(b) Hitce, J.; Retailleau, P.; Baudoin, O. Chem. Eur. J. 2007, 13, 792–799; (c)
Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 14570–
14571; (d) Dong, C.-G.; Hu, Q.-S. Angew. Chem., Int. Ed. 2006, 45, 2289–2292; (e)
Ren, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 3462–3465.
In summary, we have developed an efficient method for the di-
rect oxidative coupling of active methylenic sp3 C–H bonds with
benzylic sp3 C–H and allylic sp3 C–H bonds by using DDQ as a
dehydrogenating reagent.19 This method has several advantages:
(1) no metal is required for the reaction. (2) It proceeds without
additional reagent. (3) Simple benzylic and allylic substrates can
be used directly without pre-functionalization. (4) It gives the de-
sired products in good to excellent yields.
8. (a) Davies, H. M. L. Angew. Chem., Int. Ed. 2006, 45, 6422–6425; (b) Davies, H. M.
L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861–2903; (c) Davies, H. M. L.; Loe,
Ø. Synthesis 2004, 2595–2608; (d) Müller, P.; Tohill, S. Tetrahedron 2000, 56,
1725–1731.
9. (a) Mousseau, J. J.; Larivée, A.; Charette, A. B. Org. Lett. 2008, 10, 1641–1643; (b)
Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266–
3267; (c) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L.
B.; Yu, j.-Q. J. Am. Chem. Soc. 2007, 129, 3510–3511; (d) Chen, X.; Goodhue, C. E.;
Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634–12635; (e) Kalyani, D.; Deprez, N.
R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330–7331; (f)
Zaitsev, V. G.; Shabashov, D.; Dagulis, O. J. Am. Chem. Soc. 2005, 127, 13154–
13155; (g) Shabashov, D.; Dagulis, O. Org. Lett. 2005, 7, 3657–3659; (h) Desai, L.
V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542–9543.
10. (a) Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.;
Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857–12869; (b) Baran, P. S.;
DeMartino, M. P. Angew. Chem., Int. Ed. 2006, 45, 7083–7086; (c) Nishino, H.;
Kamachi, H.; Baba, H.; Kurosawa, K. J. Org. Chem. 1992, 57, 3551–3557; (d)
Trost, B. M.; Dietsche, T. J. J. Am. Chem. Soc. 1973, 95, 8200–8201.
Acknowledgments
The authors are thankful to CSIR, New Delhi, India, for financial
assistance and to the Director of Indian Institute of Chemical Tech-
nology for his encouragement.
11. Trost, B. M.; Strege, P. E.; Webber, L.; Fullerton, T. J.; Dietche, T. J. J. Am. Chem.
Soc. 1978, 100, 3407–3408.
Supplementary data
12. Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56–57.
13. Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505–6507.
14. Borduas, N.; Powell, D. A. J. Org. Chem. 2008, 73, 7822–7825.
15. (a) List, B. Tetrahedron 2002, 58, 5573–5590; (b) List, B. Synlett 2001, 1675–
1686; (c). Acc. Chem. Res. 2004, 37.
Supplementary data (typical detailed experimental procedure
and analytical data for all the compounds) associated with this