LU ET AL.
the internal N-terminal trimeric coiled-coil of gp41 and antibodies
directed against them are potent inhibitors of HIV envelope-
mediated cell fusion. J. Biol. Chem. 2003; 278: 20278–20285;
(c) Dwyer JJ, Wilson KL, Martin K, Seedorff JE, Hasan A, Medinas RJ,
Davison DK, Feese MD, Richter HT, Kim H, Matthews TJ, Delmedico
MK. Design of an engineered N-terminal HIV-1 gp41 trimer with
enhanced stability and potency. Protein Sci. 2008; 17: 633–643.
7 Kliger Y, Shai Y. Inhibition of HIV-1 entry before gp41 folds into its
fusion-active conformation. J. Mol. Biol. 2000; 295: 163–168.
8 Ferrer ME, Kapoor TM, Strassmaier TL, Weissenhorn W., Skehel JJ,
Oprian DT, Schreiber SL, Wiley DC, Harrison SC. Selection of gp41-
mediated HIV-1 cell entry inhibitors from biased combinatorial
libraries of non-natural binding elements. Nat. Struct. Biol. 1999; 6:
953–960; (b) Lu M, Blacklow SC, Kim PS. A trimeric structural domain
of the HIV-1 transmembrane glycoprotein. Nat. Struct. Biol. 1995; 2:
1075–1082.
17 (a) Schneider SE, O’Neil SN, Anslyn EV. Coupling rational design with
libraries leads to the production of an ATP selective chemosensor.
J. Am. Chem. Soc. 2000; 122: 542–543; (b) Schmuck C, Schwegmann
M. A molecular flytrap for the selective binding of citrate and other
tricarboxylates in water. J. Am. Chem. Soc. 2005; 127: 3373–3379.
18 SzaboT,O’LearyBM,RebekJ, Jr.Self-assemblingsieves.AngewChem.
Int. Ed. Engl 1999; 37: 3410–3413.
19 ZhongZ,AnslynEV.Controllingtheoxygenationlevelofhemoglobin
by using a synthetic receptor for 2,3-bisphosphoglycerate. Angew
Chem. Int. Ed. Engl 2003; 46: 3005–3008.
20 (a) Dwyer JJ, Hasan A, Wilson KL, White JM, Matthews TJ, Delmedico
MK. The hydrophobic pocket contributes to the structural stability of
the N-terminal coiled coil of HIV gp41 but is not required for six-helix
bundle formation. Biochemistry 2003; 42: 4945–4953; (b) Greenberg
ML, Cammack N. Resistance to enfuvirtide, the first HIV fusion
inhibitor. J. Antimicrob. Chemother. 2004; 54: 333–340; (c) Mink M,
Mosier SM, Janumpalli S, Davison D, Jin L, Melby T, Sista P, Erickson
J, Lambert D, Stanfield-Oakley SA, Salgo M, Cammack N, Matthews
T, Greenberg ML. Impact of human immunodeficiency virus type 1
gp41aminoacidsubstitutionsselectedduringenfuvirtidetreatment
on gp41 binding and antiviral potency of enfuvirtide in vitro. J. Virol.
2005; 79: 12447–12454.
21 (a) Debnath AK, Radigan L, Jiang S. Structure-based identification
of small molecule antiviral compounds targeted to the gp41 core
structure of the human immunodeficiency virus type 1. J. Med.
Chem. 1999; 42: 3203–3209; (b) Naicker KP. Synthesis and anti-HIV-1
activity of 4-[4-(4,6-bisphenylamino-triazin-2-ylamino)-5-methoxy-
2-methylphenylazo]-5-hydroxynaphthalene-2,7-disulfonic acid and
its derivatives. Bioorg. Med. Chem. 2004; 12: 1215–1220; (c) Mo H,
Konstantinidis AK, Stewart KD, Dekhtyar T, Ng T, Swift K, Matayoshi
ED, Kati W, Kohlbrenner W, Molla A. Conserved residues in the
coiled-coil pocket of human immunodeficiency virus type 1 gp41
are essentialfor viral replication and interhelical interaction. Virology
2004; 329: 319–327.
9 Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. Atomic
structure of the ectodomain from HIV gp41. Nature 1997; 387:
426–430.
10 (a) Xu W, Taylor JW. A template-assembled model of the N-peptide
helix bundle for HIV-1 gp41 with high affinity for C-peptide. Chem.
Biol.DrugDes. 2007;70:319–328;(b) BianchiE, FinottoM, Ingallinella
P, Hrin R, Carella AV, Hou XS, Schleif WA, Miller MD, Geleziunas R,
Pessi A. Covalent stabilization of coiled coils of the HIV gp41 N region
yields extremely potent and broad inhibitors of viral infection. Proc.
Natl. Acad. Sci. U.S.A. 2005; 102: 12903–12908; (c) Lebl M. (ed). 2009;
Breaking Away, Proceedings of the 21st American Peptide Symposium.
American Chemical Society, 244–245; (d) Nakahara T, Nomura W,
Ohba K, Ohya A, Tanaka T, Hashimoto C, Narumi T, Murakami
T, Yamamoto N, Tamamura H. Remodeling of dynamic structures
of HIV-1 envelope proteins leads to synthetic antigen molecules
inducing neutralizing antibodies. Bioconjug. 2010; 21: 709–714.
11 Grove A, Mutter M, Rivier JE, Montal M. Template-assembled
synthetic proteins designed to adopt a globular, four-helix bundle
conformation form ionic channels in lipid bilayers. J. Am. Chem. Soc.
1993; 115: 5919–5924.
12 (a) Handel T, DeGrado WF. De novo design of a Zn 2+binding
protein. J. Am. Chem. Soc. 1990; 112: 6710–6711; (b) Handel TM,
Williams SA, DeGrado WF. Metal ion-dependent modulation of the
dynamics of a designed protein. Science 1993; 261: 879–885.
13 (a) Ghadiri MR, Soares C, Choi C. Design of an artificial four-
helix bundle metalloprotein via a novel ruthenium(II)-assisted
self-assembly process. J. Am. Chem. Soc. 1992; 114: 4000–4002;
(b) Ghadiri RM, Case MA. De novo design of a novel heterodinuclear
three-helix bundle metalloprotein. Angew Chem. Int. Ed. Engl. 1993;
32: 1594–1597.
22 WallaceKJ,HanesR,AnslynE,MoreyJ,KilwayKV,SiegelJ.Preparation
of 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene from two versatile
1,3,5-tri(halosubstituted)2,4,6-triethylbenzenederivatives.Synthesis
2005; 2080–2083.
23 Chan WC, White PD (eds). Fmoc Solid Phase Peptide Synthesis, a
Practical Approach. Oxford University Press: Oxford, 2000; 215–228.
24 (a) Bray B. Large-scale manufacture of peptide therapeutics by
chemical synthesis. Nat. Rev. Drug Discov. 2003; 2: 587–593;
(b) Schneider SE, Bray BL, Mader CJ, Friedrich PE, Anderson MW,
Taylor TS, Boshernitzan N, Niemi TE, Fulcher BC, Whight SR, White
JM, Greene RJ, Stoltenberg LE, Lichty M. Development of HIV fusion
inhibitors. J. Pept. Sci. 2005; 11: 744–753.
14 (a) GoodmanM,FengY,MelaciniGA,TaulaneJP.Atemplate-induced
incipient collagen-like triple-helical structure. J.Am.Chem.Soc. 1996;
118:5156–5157;(b) KwakJ,CapuaAN,LocardiEE,GoodmanM.TREN
(tris(2-aminoethyl)amine): an effective scaffold for the assembly of
triple helical collagen mimetic structures. J. Am. Chem. Soc. 2002;
124: 14085–14091.
15 Kilway KV, Siegel JS. Control of functional group proximity and
directionbyconformationalnetworks:synthesisandstereodynamics
of persubstituted arenes. Tetrahedron 2001; 57: 3615–3627.
16 (a) Vacca A, Nativi C, Cacciarini M, Pergoli R, Roelens S. A new tripodal
teceptor for molecular recognition of monosaccharides. A paradigm
for assessing glycoside binding affinities and selectivities by 1H NMR
spectroscopy. J. Am. Chem. Soc. 2004; 126: 16456–15465; (b) Cabell
LA, Best MD, Lavigne JJ, Schneider SE, Perreault DM, Monahan MK,
Anslyn EV. Metal triggered fluorescence sensing of citrate using a
synthetic receptor. J. Chem. Soc., Perkin Trans 2 2001; 3: 315–323.
25 Chhabra SR, Hothi B, David J, Evans DJ, White PD, Bycroft BW, Chan
WC. An appraisal of new variants of Dde amine protecting group for
solid phase peptide synthesis. Tetrahedron Lett. 1998; 39: 1603.
26 (a) Carpino LA, Sadat-Aalaee D, Chao HG, DeSelms RH.
[(9-Fluorenylmethyl)oxy]carbonyl (FMOC) amino acid fluorides.
Convenient new peptide coupling reagents applicable to the
FMOC/tert-butyl strategy for solution and solid-phase syntheses.
J. Am. Chem. Soc. 1990; 112: 9651–9652; (b) Carpino LA, Beyermann
M, Wenschuh H, Bienert M. Peptide synthesis via amino acid halides.
Acc. Chem. Res. 1996; 29: 268; (c) Wenschuh H, Beyermann M, Winter
R, Bienert M, Ionescu D, Carpino LA. Fmoc amino acid fluorides in
peptide synthesis – Extension of the method to extremely hindered
amino acids. Tetrahedron Lett. 1996; 37: 5483–5486.
c