D
T. Nagata et al.
Letter
Synlett
(2) For selected reviews, see: (a) Guldi, D. M.; Illescas, B. M.;
Atienza, C. M.; Wielopolski, M.; Martín, N. Chem. Soc. Rev. 2009,
38, 1587. (b) Thompson, B. C.; Fréchet, J. M. J. Angew. Chem. Int.
Ed. 2008, 47, 58. (c) Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M.
Eur. J. Med. Chem. 2003, 38, 913.
(3) Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006,
106, 1105.
(4) Hepworth, J. D.; Waring, D. R.; Waring, M. J. Basic Concepts in
Chemistry: Aromatic Chemistry 2003.
(5) (a) Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y.
Angew. Chem. Int. Ed. 2015, 54, 13068. (b) Li, J.; Hu, G.; Wang, N.;
Hu, T.; Wen, Q.; Lu, P.; Wang, Y. J. Org. Chem. 2013, 78, 3001.
(c) Machado, A. M.; Munaro, M.; Martins, T. D.; Davila, L. Y. A.;
Giro, R.; Caldas, M. J.; Atvars, T. D. Z.; Akcelrud, L. C. Macromole-
cules 2006, 39, 3398. (d) Lim, D. S. W.; Anderson, E. A. Synthesis
2012, 44, 983.
(6) (a) Bae, S.; Mah, H.; Chaturvedi, S.; Jeknic, T. M.; Baird, W. M.;
Katz, A. K.; Carrell, H. L.; Glusker, J. P.; Okazaki, T.; Laali, K. K.;
Zajc, B.; Lakshman, M. K. J. Org. Chem. 2007, 72, 7625. (b) Wei,
L.; Shi, Q.; Bastow, K. F.; Brossi, A.; Morris-Natschke, S. L.;
Nakagawa-Goto, K.; Wu, T.-S.; Pan, S.-L.; Teng, C.-M.; Lee, K.-H.
J. Med. Chem. 2007, 50, 3674. (c) Schmidt, J. M.; Mercure, J.;
Tremblay, G. B.; Pagé, M.; Kalbakji, A.; Feher, M.; Dunn-Dufault,
R.; Peter, M. G.; Redden, P. R. J. Med. Chem. 2003, 46, 1408.
(7) (a) Kuninobu, Y.; Sueki, S. Synthesis 2015, 47, 3823. (b) Segawa,
Y.; Maekawa, T.; Itami, K. Angew. Chem. Int. Ed. 2015, 54, 66.
(c) Jin, T.; Zhao, J.; Asao, N.; Yamamoto, Y. Chem. Eur. J. 2014, 20,
3554. (d) Tanaka, K. Transition-Metal-Mediated Aromatic Ring
Construction; John Wiley and Sons: Hoboken, 2013.
vents, product 3 was isolated by column chromatography on
silica gel.
9,10-Dipropylphenanthrene (3aa) [CAS Reg. No. 19793-67-0]10
Purified by column chromatography with hexane as eluent
(54.2 mg, 83%); white solid. 1H NMR (400 MHz, CDCl3): δ = 1.19
(t, J = 7.3 Hz, 6 H), 1.71–1.84 (m, 4 H), 3.11–3.22 (m, 4 H), 7.57–
7.68 (m, 4 H), 8.08–8.17 (m, 2 H), 8.74 (dd, J = 7.2, 2.4 Hz, 2 H).
13C NMR (100 MHz, CDCl3): δ = 15.0, 24.2, 31.7, 123.1, 124.9,
125.5, 126.7, 130.0, 131.5, 134.0. HRMS: m/z calcd for C20H23
[M + H+]: 263.1794; found: 263.1771.
For other compounds, see the Supporting Information.
(13) Procedure for Equation 2
To a 20 mL two-necked flask were added arylboronic acid 1a
(1.0 mmol, 198 mg), alkyne 4 (0.25 mmol), [(Cp*RhCl2)2] (0.01
mmol, 6 mg), Cu(OAc)2·H2O (1.0 mmol, 200 mg), 1-methylnaph-
thalene (ca. 50 mg) as internal standard, and DMF (3 mL). The
resulting mixture was stirred under N2 at 100 °C for 2 h. Then,
the reaction mixture was cooled to room temperature and fil-
tered through a Celite pad with CH2Cl2. After evaporating the
solvents, product 5 was isolated by column chromatography on
silica gel.
10,10′-Dimethyl-9,9′-biphenanthrene (5aa)
Purified by column chromatography with hexane–toluene
(95:5, v/v) as eluent and then preparative GPC (55.6 mg, 58%);
white solid; mp 268–269 °C. 1H NMR (400 MHz, CDCl3): δ = 2.37
(s, 6 H), 7.22 (dd, J = 8.2, 1.1 Hz, 2 H), 7.29 (ddd, J = 8.2, 6.8, 1.1
Hz, 2 H), 7.58 (ddd, J = 8.3, 6.8, 1.4 Hz, 2 H), 7.70–7.80 (m, 4 H),
8.19–8.26 (m, 2 H), 8.81 (d, J = 8.3 Hz, 2 H), 8.85–8.92 (m, 2 H).
13C NMR (100 MHz, CDCl3): δ = 16.8, 122.7, 123.2, 125.2, 126.0,
126.5, 127.0, 127.0, 127.2, 129.8, 130.4, 131.5, 132.0, 132.1,
134.8. HRMS: m/z calcd for C30H23 [M + H+]: 383.1794; found:
383.1796.
(8) (a) Iwasaki, M.; Araki, Y.; Iino, S.; Nishihara, Y. J. Org. Chem.
2015, 80, 9247. (b) Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J.
M. J. Org. Chem. 1997, 62, 7536. (c) Wang, C.; Rakshit, S.; Glorius,
F. J. Am. Chem. Soc. 2010, 132, 14006.
10,10′-Diethyl-9,9′-biphenanthrene (5ab)
(9) Matsumoto, A.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011,
133, 6557.
(10) Nagata, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2014, 79,
8960.
(11) (a) Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009,
11, 5198. (b) Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org.
Chem. 2011, 76, 2867.
(12) General Procedure for Equation 1 and Scheme 2
To a 20 mL two-necked flask were added arylboronic acid 1
(0.25 mmol), alkyne 2 (0.25 mmol), [(Cp*RhCl2)2] (0.005 mmol,
3 mg), Cu(OAc)2·H2O (0.025 mmol, 5 mg), 1-methylnaphthalene
(ca. 50 mg) as internal standard, and DMF (3 mL). The resulting
mixture was stirred under air at 100 °C for 2 h. Then, the reac-
tion mixture was cooled to room temperature and filtered
through an alumina pad with CH2Cl2. After evaporating the sol-
Purified by preparative GPC (58.1 mg, 57%); white solid; mp
260–261 °C. 1H NMR (400 MHz, CDCl3): δ = 1.03 (t, J = 7.5 Hz, 6
H), 2.75–2.93 (m, 4 H), 7.21–7.30 (m, 4 H), 7.58 (ddd, J = 8.3, 6.3,
1.9 Hz, 2 H), 7.70–7.79 (m, 4 H), 8.20–8.27 (m, 2 H), 8.80 (d,
J = 8.3 Hz, 2 H), 8.87–8.93 (m, 2 H). 13C NMR (100 MHz, CDCl3):
δ = 14.3, 24.4, 122.6, 123.4, 125.5, 126.1, 126.4, 126.7, 126.9,
127.9, 129.9, 130.9, 131.1, 132.2, 134.3, 136.7. HRMS: m/z calcd
for C32H27 [M + H+]: 411.2107; found: 411.2086.
(14) (a) Aotake, T.; Suzuki, M.; Aratani, N.; Yuasa, J.; Kuzuhara, D.;
Hayashi, H.; Nakano, H.; Kawai, T.; Wu, J.; Yamada, H. Chem.
Commun. 2015, 51, 6734. (b) Tanaka, K.; Aratani, N.; Kuzuhara,
D.; Sakamoto, S.; Okujima, T.; Ono, N.; Uno, H.; Yamada, H. RSC
Adv. 2013, 3, 15310. (c) Zhang, X.; Jiang, X.; Luo, J.; Chi, C.; Chen,
H.; Wu, J. Chem. Eur. J. 2010, 16, 464.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–D