pubs.acs.org/joc
step, resulting in a poor regiochemical control for unsymme-
Synthesis of Substituted Indole from
2-Aminobenzaldehyde through [1,2]-Aryl Shift
trical ketones.4 For the Larock indole synthesis and its variants,
the necessity for transition metals and bases can limit the
substrate scope of the reaction.5
ꢀ
Patrick Levesque and Pierre-Andre Fournier*
An interesting alternative to the indole scaffold has been
reported by Pei and co-workers in which they generated
indoles directly from 1-(2-aminophenyl)-2-chloroethanone
and a Grignard reagent (Figure 1, top).6 Performing an
addition of an organometallic compound to this ketone
affords a benzylic alkoxide. The presence of a chlorine atom
at the R position promotes subsequent [1,2]-aryl migration,
generating 1-(2-aminophenyl)acetone. The indole core was
then rapidly formed following condensation of the aniline
onto the ketone. Although interesting, this strategy is limited
by the use of Grignard reagents and the availability of the
requisite starting R-chloroketone.
Merck Frosst Center for Therapeutic Research, 16711 Trans
Canada Highway, Kirkland, Qc, Canada, H9H 3L1
Received August 25, 2010
Hossain and co-workers investigated a similar, but step-
wise approach to Pei’s indole synthesis.7,8 The requisite
benzylic alkoxide intermediate in this case was accessed via
acid-catalyzed addition of ethyl diazoacetate (EDA) to 2-nitro-
benzaldehyde (Figure 1, bottom). Subsequent [1,2]-aryl migra-
tion then furnished 2-(2-nitrophenyl)-3-oxopropanoate. The
desired indole core was obtained after reduction of the nitro
group and subsequent condensation of the aniline onto the
aldehyde. Although the use of Grignard reagents is success-
fully obviated, the main downside of this stepwise procedure
is that the hydrogenation step might be incompatible with
various functional groups on the indole core such as nitro and
bromine, groups that could allow for further functionalization.
Both Pei’s and Hossain’s strategy are similar in that they both
generate a benzylic alkoxide that undergoes [1,2]-aryl migration
via displacement of a suitable leaving group at the R-position.
On the other hand, the two strategies differ with regard to the
nucleophile used, and while one occurs in a basic media, the other
one is acid catalyzed. Here, we report a simple and straight-
forward addition of ethyl diazoacetate to readily available
A mild, efficient, and simple method for the synthesis of
3-ethoxycarbonylindoles has been developed. Addition
of ethyl diazoacetate (EDA) to 2-aminobenzaldehydes
cleanly affords the indole core. As opposed to other common
approaches for the synthesis of indole, this method dis-
plays both excellent functional group tolerance and per-
fect regiochemical control. This allowed the synthesis of a
variety of useful indole building blocks from 2-amino-
benzaldehydes derived from readily available anthranilic
acids.
The indole core represents one of the ubiquitous hetero-
cyclic scaffolds in natural products and pharmaceutical
compounds.1 The synthesis of this core has been mainly depen-
dent on two approaches: Fisher indole-type reactions and
variations of Larock indole synthesis.2,3 The most glaring
limitation of the Fisher indole-type reaction is the lack of stereo-
chemical control during the electrophilic aromatic substitution
(5) For a review on metal-catalyzed synthesis of indoles, see: (a) Zeni, G.;
Larock, R. C. Chem. Rev. 2004, 104, 2285–2210. (b) Cacchi, A.; Fabrizi, G.
Chem. Rev. 2005, 105, 2873–2920. (c) Alonso, F.; Beletskaya, I. P.; Yus, M.
Chem. Rev. 2004, 104, 3079–3160. For recent variants of the Larock indole
synthesis, see: (d) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474–16475. (e) Leogane, O.;
Lebel, H. Angew. Chem., Int. Ed. 2008, 47, 350–352. (f) Wurtz, S.; Neumann,
J. J.; Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230–7233.
(g) Jia, Y.; Zhu, J. J. Org. Chem. 2006, 71, 7826–7834. (h) Nakamura, Y.;
Ukita, T. Org. Lett. 2002, 4, 2317–2320.
(1) (a) Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278–311. (b) Somei,
M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73–103. (c) Horton, D. A.; Bourne,
G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893–930. (d) Kawasaki, T.; Higuchi,
K. Nat. Prod. Rep. 2007, 24, 843–868. (e) Rahman, A.; Basha, A. Indole
Alkaloids; Harwood Academic Publishers: Amsterdam, The Netherlands,
1998; p 141. (f) Gupta, R. R. Heterocyclic Chemistry; Springer Publishing:
New York, 1999; Vol. 2, p 193.
(6) (a) Pei, T.; Chen, C.-Y.; Dormer, P. G.; Davies, I. W. Angew. Chem.,
Int. Ed. 2008, 47, 4231–4233. (b) Pei, T.; Tellers, D. M.; Streckfuss, E. C.;
Chen, C.-Y.; Davies, I. W. Tetrahedron 2009, 65, 3285–3291.
(7) (a) Islam, M. S.; Brennan, C.; Wang, Q.; Hossain, M. M. J. Org.
Chem. 2006, 71, 4675–4C677. (b) Dudley, M. E.; Morshed, Md. M.; Brennan,
C. L.; Islam, M. S.; Ahmad, M. S.; Atuu, M.-R.; Branstetter, B.; Hossain,
M. M. J. Org. Chem. 2004, 69, 7599–7608.
(2) For a general review on indole synthesis, see: (a) Humphrey, G. R.;
Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911. (b) Gribble, G. W. J. Chem.
Soc., Perkin Trans. 1 2000, 1045–1075.
(3) For some recent methods, see: (a) Du, Y.; Liu, R.; Linn, G.; Zhao, K.
Org. Lett. 2006, 8, 5919–5922. (b) Du, Y.; Chang, J.; Reiner, J.; Zhao, K.
J. Org. Chem. 2008, 73, 2007–2010. (c) Schlosser, M.; Ginanneschi, A.;
Leroux, F. Eur. J. Org. Chem. 2006, 2956–2969. (d) Kraus, G. A.; Guo, H.
Org. Lett. 2008, 10, 3061–3063.
(8) For leading references on acid-catalyzed reactions of substituted
diazomethanes and carbonyls, see: (a) Hashimoto, T.; Naganawa, Y.;
Maruoka, K. J. Am. Chem. Soc. 2008, 130, 2434–2435. (b) Hashimoto, T.;
Miyamoto, H.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2009, 131,
11280–11281. (c) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem.
Soc. 2009, 131, 6614–6617. (d) Moebius, D. C.; Kingsbury, J. S. J. Am. Chem.
Soc. 2009, 131, 878–879. (e) Wommack, A. J.; Moebius, D. C.; Travis, A. L.;
Kingsbury, J. S. Org. Lett. 2009, 11, 3202–3205. (f) Li, W.; Wang, J.; Hu, X.;
Shen, K.; Wang, W.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc.
2010, 132, 8532–8533.
(4) Robinson, B. The Fisher Indole Synthesis; John Wiley and Sons:
Chichester, UK, 1982.
DOI: 10.1021/jo1016713
r
Published on Web 09/13/2010
J. Org. Chem. 2010, 75, 7033–7036 7033
2010 American Chemical Society