pubs.acs.org/joc
Unnatural amino acids are chiral molecules that have
Synthesis of Axially Chiral Amino Acid and Amino
Alcohols via Additive-Ligand-Free Pd-Catalyzed
Domino Coupling Reaction and Subsequent
attracted attention as promising organocatalysts2 and
ligands3 for asymmetric synthesis as well as chiral building
blocks for peptidomimetics.4 Although unnatural amino
acids possessing central chirality have been well developed,5
the synthesis and application of axially chiral amino acids
have not yet been fully exploited.6 C2-Symmetric 2,20-diamino
analogue 27 and 2,20-dicarboxylic acid analogue 38 have been
widely employed as chiral inducers in a variety of asymmetric
syntheses. However, the corresponding non-C2-symmetric
binaphthyl amino acid 1, one of the simplest axially chiral
amino acids possessing amino and carboxylic acid groups at
the C-2 and C-20 positions, has not been reported to date
(Figure 1).
Transformations of the Product Amidoaza[5]helicene
Takumi Furuta,*,† Junya Yamamoto,† Yuki Kitamura,‡
Ayano Hashimoto,‡ Hyuma Masu,§ Isao Azumaya,§
Toshiyuki Kan,‡ and Takeo Kawabata†
†Institute for Chemical Research, Kyoto University,
Uji 611-0011, Kyoto, Japan, ‡School of Pharmaceutical
Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku,
Shizuoka 422-8526, Japan, and §Faculty of Pharmaceutical
Sciences at Kagawa Campus, Tokushima Bunri University,
1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
Received August 3, 2010
FIGURE 1. Axially chiral binaphthyls.
Non-C2-symmetric axially chiral biaryl compounds have
been most commonly prepared by using transition-metal
catalyzed cross-coupling reactions between aryl halides or
triflates and aryl metal species. Although cross-coupling
(4) For reviews on amino acids as building blocks for peptidomimetics,
see: (a) Seebach, D.; Gardiner, J. Acc. Chem. Res. 2008, 41, 1366–1375.
(b) Horne, W. S.; Gellman, S. H. Acc. Chem. Res. 2008, 41, 1399–1408.
(5) For reviews on central chiral unnatural amino acids, see: (a) Perdih,
A.; Dolenc, S. Curr. Org. Chem. 2007, 11, 801–832. (b) de Graaf, A. J.;
Kooijman, M.; Hennink, W. E.; Mastrobattista, E. Bioconjugate Chem.
2009, 20, 1281–1295.
(6) For examples of axially chiral amino acid, see: (a) Ridvan, L.;
Abdallah, N.; Holakovsky, R.; Tichy, M.; Zvada, J. Tetrahedron: Asymme-
try 1996, 7, 231–236. (b) Mazaleyrat, J.-P.; Gaucher, A.; Wakselman, M.;
Tchertanov, L.; Guilhem, J. Tetrahedron Lett. 1996, 37, 2971–2974.
Novel optically active axially chiral amino acid and
amino alcohols have been synthesized efficiently via
lactam ring-opening, with the aid of an optically active
alcohol, amidoaza[5]helicene 5, which has been readily
prepared by an additive-ligand-free Pd catalyzed domino
coupling reaction in a single step. The stereostructures of
these chiral molecules have also been clarified.
ꢀ
(c) Tichy, M.; Holanova, J.; Zavada, J. Tetrahedron: Asymmetry 1998, 9,
3497–3504. (d) Ridvan, L.; Budesinsky, M.; Tichy, M.; Malon, P.;
ꢀ
ꢀ
ꢀ
Zavada, J.; Podlaha, J.; Cısarova, I. Tetrahedron 1999, 55, 12331–12348.
(e) Formaggio, F.; Crisma, M.; Toniolo, C.; Tchertanov, L.; Guilhem, J.;
Mazaleyrat, J.-P.; Gaucher, A.; Wakselman, M. Tetrahedron 2000, 56, 8721–
8734. (f) Formaggio, F.; Peggion, C.; Crisma, M.; Toniolo, C.; Tchertanov,
L.; Guilhem, J.; Mazaleyrat, J.-P.; Goubard, Y.; Gaucher, A.; Wakselman,
M. Helv. Chem. Acta 2001, 84, 481–501. (g) Kano, T.; Takai, J.; Tokuda, O.;
Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 3055–3057. (h) Kano, T.;
Tokuda, O.; Maruoka, K. Tetrahedron Lett. 2006, 47, 7423–7426. (i) Kano,
T.; Tokuda, O.; Takai, J.; Maruoka, K. Chem. Asian. J. 2006, 1-2, 210–215.
(j) Wright, K.; Lohier, J.-F.; Wakselman, M.; Mazaleyrat, J.-P.; Formaggio,
F.; Peggion, C.; Zotti, M. D.; Toniolo, C. Tetrahedron 2008, 64, 2307–2320.
(k) Dutot, L.; Wright, K.; Gaucher, A.; Wakselman, M.; Mazaleyrat, J.-P.;
Zotti, M. D.; Peggion, C.; Formaggio, F.; Toniolo, C. J. Am. Chem. Soc.
2008, 130, 5986–5992.
Axially chiral biaryls, such as BINOL and BINAP are
well-known as reliable chiral inducers in asymmetric synthe-
sis as well as key components of asymmetric molecular
recognition in host-guest chemistry. The discovery of novel
axially chiral biaryl groups and the development of efficient
synthetic methods to prepare them are increasing in impor-
tance with the increasing prevalence of chirality in pharma-
ceuticals and organic materials.1
(7) For examples, see: (a) Huang, H.; Okuno, T.; Tsuda, K.; Yoshimura,
M.; Kitamura, M. J. Am. Chem. Soc. 2006, 128, 8716–8717. (b) Kano, T.;
Tanaka, Y.; Maruoka, K. Org. Lett. 2006, 8, 2687–2689. (c) Sakakura, A.;
Suzuki, K.; Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229–2232.
(d) Sakakura, A.; Suzuki, K.; Ishihara, K. Adv. Synth. Catal. 2006, 348,
2457–2465. (e) Kano, T.; Tanaka, Y.; Maruoka, K. Tetrahedron 2007, 63,
8658–8664. (f) Kano, T.; Tanaka, Y.; Osawa, K.; Yurino, T.; Maruoka, K.
J. Org. Chem. 2008, 73, 7387–7389. (g) Rabalakos, C.; Wulff, W. D. J. Am.
Chem. Soc. 2008, 130, 13524–13525. (h) Alamsetti, S. K.; Mannam, S.;
(1) For reviews on axially chiral biaryls, see: (a) Bringmann, G.; Price
Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M.
Angew. Chem., Int. Ed. 2005, 44, 5384–5427. (b) Baudoin, O. Eur. J. Org.
Chem. 2005, 4223–4229.
(2) For reviews on amino acids as organocatalysts, see: (a) List, B. Acc.
Chem. Res. 2004, 37, 548–557. (b) Notz, W.; Tanaka, F.; Barbas, C. F., III.
Acc. Chem. Res. 2004, 37, 580–591. (c) List, B. Chem. Commun. 2006, 819–
824.
Mutupandi, P.; Sekar, G. Chem. Eur. J. 2009, 15, 1086–1090.
;
(8) For examples, see: (a) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc.
2007, 129, 10054–10055. (b) Hashimoto, T.; Hirose, M.; Maruoka, K. J. Am.
Chem. Soc. 2008, 130, 7556–7557.
(3) For a review on amino acids as ligands, see: Ma, D.; Cai, Q. Acc. Chem.
Res. 2008, 41, 1450–1460.
7010 J. Org. Chem. 2010, 75, 7010–7013
Published on Web 09/14/2010
DOI: 10.1021/jo101524t
r
2010 American Chemical Society