1094
N. C. Srivastav et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1091–1094
2. Addo, K. K.; Owusu-Darko, K.; Yeboah-Manu, D.; Caulley, P.; Minamikawa, M.;
Bonsu, F.; Leinhardt, C.; Akpedonu, P.; Ofori-Adjei, D. Ghana Med. J. 2007, 41, 52.
3. (a) Wells, C. D. Curr. Infect. Dis. Rep. 2010, 12, 192; (b) Ruíz, P. R.; Esteban, J.;
Guerrero, M. L. F. Clin. Infect. Dis. 2002, 35, 212.
4. Rosas-Taraco, A. G.; Arce-Mendoza, A. Y.; Caballero-Olín, G.; Salinas-Carmona,
M. C. AIDS Res. Human Retroviruses 2006, 22, 45.
effective and selective inhibitor, was equiactive to cycloserine
against M. bovis and Mtb H37Ra, and was more potent than cyclo-
serine against M. avium. Although compound 3 was significantly
less active than a first-line anti-TB drug rifampicin, it could serve
as a useful lead compound to improve our understanding of TB
drug-design, and develop and optimize therapeutic regimens for
TB infections. It is postulated that 3 after metabolic conversion to
phosphorylated forms by mycobacterial kinases may be selectively
inhibiting Mtb DNA and/or RNA synthesis by acting as substrate
and/or inhibitor of metabolic enzymes of DNA/RNA synthesis.
In vitro antimycobacterial activity assay: M. bovis (BCG), M. tuber-
culosis (H37Ra), and M. avium (ATCC 25291) were obtained from
the American Type Culture Collection, Rockville, MD. The antimy-
cobacterial activity was determined using the Microplate alamar
blue assay (MABA).17,26 Test compounds were dissolved in DMSO
at 10 mg/mL and subsequent dilutions were performed in 7H9GC
(Difco Laboratories, Detroit, Michigan) medium in 96 well plates.
For these experiments, each compound was tested at 100, 50, 25,
5. Mariani, F.; Goletti, D.; Ciaramella, A.; Martino, A.; Colizzi, V.; Fraziano, M. Curr.
Mol. Med. 2001, 1, 209.
6. Tuberculosis Infection Latent Tuberculosis Infection, Fact Sheet 2008,
Communicable Disease Control Department, Haliburton, Kawartha, Pine
Ridge District Health Unit, Ontario, Canada. Accessed on 23rd September
7. Imaeda, T. Int. J. Syst. Bacteriol. 1985, 35, 147.
8. Koehler, C. S. W. Modern Drug Dis. 2002, 5, 47.
9. Guerrero, A.; Cobo, J.; Fortün, J.; Navas, E.; Quereda, C.; Asensio, A.; Cañón, J.;
Blazquez, J.; Gómez-Mampaso, E. Lancet 1997, 350, 1738.
10. Inderlied, C. B.; Kemper, C. A.; Bermudez, L. E. Clin. Microbiol. Rev. 1993, 6, 266.
11. (a) Falkinham, J. O., III Clin. Microbiol. Rev. 1996, 9, 177; (b) Mdluli, K.; Swanson,
J.; Fischer, E.; Lee, R. E.; Barry, C. E., III Mol. Microbiol. 2002, 27, 1223.
12. Griffith, D. E.; Aksamit, T.; Brown-Elliott, B. A.; Catanzaro, A.; Daley, C.; Gordin,
F.; Holland, S. M.; Horsburgh, R.; Huitt, G.; Iademarco, M. F.; Iseman, M.;
Olivier, K.; Ruoss, S.; von Reyn, C. F.; Wallace, R. J., Jr.; Winthrop, K. Am. J. Respir.
Crit. Care Med. 2007, 175, 367.
13. Heifets, L.; Mor, N.; Vanderkolk, J. Antimicrob. Agents Chemother. 1993, 37, 2364.
14. (a) XDR-TB-a Global Threat. Editorial. Lancet 2006, 368, 964.; (b) Wright, A.
Morbidity and Mortality Weekly Report (MMWR) 2006, 55, 301.
15. Zhang, Y.; Yew, W. W. Int. J. Tubercul. Lung Dis. 2009, 13, 1320.
16. Johar, M.; Manning, T.; Kunimoto, D. Y.; Kumar, R. Bioorg. Med. Chem. 2005, 13,
6663.
10, 5, 1, and 0.5 lg/mL concentrations in triplicates. The experi-
ments were repeated two times and the mean percent inhibition
is reported in the Table 1. The standard deviations were within
10% of the mean value.
17. Shakya, N.; Srivastav, N. C.; Desroches, N.; Agrawal, B.; Kunimoto, D. Y.; Kumar,
R. J. Med. Chem. 2010, 53, 4130.
18. Srivastav, N. C.; Shakya, N.; Desroches, N.; Agrawal, B.; Kunimoto, D. Y.; Kumar,
R., Unpublished results.
19. Herdewijn, P.; Balzarini, J.; De Clercq, E.; Pauwels, R.; Baba, M.; Broder, S.;
Vanderhaeghe, H. J. Med. Chem. 1987, 30, 1270.
20. Aerschot, A. V.; Everaert, D.; Balzarini, J.; Augustyns, K.; Jie, L.; Janssen, G.;
Peeters, O.; Blaton, N.; De Ranter, C.; De Clercq, E.; Herdewijn, P. J. Med. Chem.
1990, 33, 1833.
21. Lin, T.-S.; Chen, M. S.; McLaren, C.; Gao, Y.-S.; Ghazzouli, I.; Prusoff, W. H. J. Med.
Chem. 1987, 30, 440.
22. Lin, T.-S.; Prusoff, W. H. J. Med. Chem. 1978, 21, 109.
23. Chu, C. K.; Schinazi, R. F.; Ahn, M. K.; Ullas, G. V.; Gu, Z. P. J. Med. Chem. 1989, 32,
612.
In Vitro Cytotoxicity Assay. Human hepatoma cell line (Huh-7)
was used to determine the effect of test compounds on human cell
cytotoxicity using XTT and 3H-Thymidine assays. Cell viability was
measured using the cell proliferation kit II (XTT; Roche), as per
manufacturer’s instructions.
Acknowledgments
We are grateful to the Canadian Institutes of Health Research
(CIHR) for an operating grant (MOP-49415) for the financial sup-
port of this research.
24. Experimental synthesis of 3’-Fluoro-2’,3’-dideoxy-5-trifluoromethyluridine (19).
The compound 17 (0.07 g, 0.13 mmol) was dissolved in 80% aqueous acetic acid
(5 mL) and heated at 90 °C for 0.5 h. Solvent was removed in vacuo and the
crude product thus obtained was purified on silica gel column using MeOH/
Supplementary data
CHCl3 (5:95, v/v) as eluent to give 19 (0.018 g, 46%) as solid; mp 198–200 °C. 1
H
Supplementary data associated with this article can be found, in
NMR (DMSO-d6) d 2.22–2.63 (m, 2H, H-20), 3.58–3.69 (m, 2H, H-50), 4.28 (dm,
J4’,F = 26.86 Hz, 1H, H-40), 5.22 (m, 1H, 5’-OH), 5.30 (dm, J3’,F = 53.10 Hz, 1H, H-
30), 6.14–6.19 (m, 1H, H-10), 8.76 (s, 1H, H-6), 11.59 (s, 1H, NH). Anal. Calcd for
C
10H10F4N2O4: C, 40.28; H, 3.38; N, 9.39. Found: C, 40.45; H, 3.47; N, 9.17.
References and notes
25. Lin, T.-S.; Guo, J.-Y.; Schinazi, R. F.; Chu, C. K.; Xiang, J.-N.; Prusoff, W. H. J. Med.
Chem. 1988, 31, 336.
1. World Health Organization. Global Tuberculosis Control: Surveillance,
Planning, and Financing. WHO Report 2010 WHO Press: Geneva, Switzerland,
26. Franzblau, S. G.; Witzig, R. S.; McLaughlin, J. C.; Torres, P.; Madico, G.;
Hernandez, A.; Degnan, M. T.; Cook, M. B.; Quenzer, V. K.; Ferguson, R. M.;
Gilman, R. H. J. Clin. Microbiol. 1998, 36, 362.