Stereoselective Formal Synthesis of (-)-Salicylihalamides
Letters in Organic Chemistry, 2010, Vol. 7, No. 6
459
3919-3922; (h) Kozmin, S. A. Efficient stereochemical relay en
route to leucascandrolide A. Org. Lett. 2001, 3, 755-758; (i) Jaber,
J. J.; Mitsui, K.; Rychnovsky, S. D. Stereoselectivity and
regioselectivity in the segment-coupling prins cyclization. J. Org.
Chem. 2001, 66, 4679-4686; (j) Kopecky, D. J.; Rychnovsky, S. D.
Mukaiyama Aldol-Prins Cyclization Cascade Reaction: a formal
total synthesis of Leucascandrolide A. J. Am. Chem. Soc. 2001,
123, 8420-8421; (k) Rychnovsky, S. D.; Thomas, C. R. Synthesis
of the C22-C26 Tetrahydropyran segment of phorboxazole by a
stereoselective prins cyclization. Org. Lett. 2000, 2, 1217-1219; (l)
Rychnovsky, S. D.; Yang, G.; Hu, Y.; Khire, U. R. Prins
desymmetrization of a C2-Symmetric Diol: application to the
synthesis of 17-Deoxyroflamycoin. J. Org. Chem. 1997, 62, 3022-
3023; (m) Su, Q.; Panek, J. S. Total synthesis of (-)-Apicularen A.
J. Am. Chem. Soc. 2004, 126, 2425-2430; (n) Yadav, J. S.; Reddy,
B. V. S.; Sekhar, K. C.; Gunasekar, D. Amberlyst-15-catalyzed
novel synthesis of tetrahydropyranols. Synthesis 2001, 6, 885-888;
(o) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N. Eco-
friendly heterogeneous solid acids as novel and recyclable catalysts
in ionic medium for tetrahydropyranols. J. Mol. Catal. A: Chem.
2004, 210, 99-103; (p) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.;
Niranjan, N.; Prasad, A. R. Lewis acidic chloroaluminate ionic
liquids: novel reaction media for the synthesis of 4-Chloropyrans.
Eur. J. Org. Chem. 2003, 1779-1783.
developed synthetic sequence for the polyketide precursors
via Prins cyclisation. The key transformations employed
were reductive ring opening, Stille coupling, Mitsunobu
inversion, Grubb’s ring closing metathesis along with Prins
cyclisation.
ACKNOWLEDGEMENTS
NVR, PPR and MSR thank CSIR, New Delhi for the
award of fellowship and also thank DST for the financial
assistance under JC Bose Fellowship scheme.
REFERENCES AND NOTES
[1]
(a) Erickson, K. L.; Beutler, J. A.; Cardellina, J. H.; Boyd, M. R.
Salicylihalamides A and B, novel cytotoxic macrolides from the
marine sponge Haliclona sp. J. Org. Chem. 1997, 62, 8188; (b)
Erickson, K. L.; Beutler, J. A.; Cardellina, II, J. A.; Boyd, M. R.
Salicylihalamides A and B, novel cytotoxic macrolides from the
marine sponge Haliclona sp. J. Org. Chem. 2001, 66, 1532
(Addition/Correction).
[6]
For the application of Prins cylisation to the natural product
synthesis by our group see ref. (a) Yadav, J. S.; Reddy, M. S.; Rao,
P. P.; Prasad, A. R. Stereoselective synthesis of anti-1,3-diol units
via Prins cyclisation: application to the synthesis of (-)-sedamine.
Tetrahedron Lett. 2006, 47, 4397-4401; (b) Yadav, J. S.; Reddy, M.
S.; Prasad, A. R. Stereoselective synthesis of polyketide precursors
containing an anti-1,3-diol system via a Prins cyclisation and
reductive cleavage sequence. Tetrahedron Lett. 2006, 47, 4937-
4941; (c) Yadav, J. S.; Reddy, M. S.; Prasad, A. R. A convergent
route to ꢁ-hydroxy ꢂ-lactones through Prins cyclisation as the key
step: synthesis of (+)-prelactones B,C and V. Tetrahedron Lett.
2005, 46, 2133-2136; (d) Yadav, J. S.; Reddy, M. S.; Prasad, A. R.
Stereoselective synthesis of (-)-tetrahydrolipstatin via Prins
cyclisations. Tetrahedron Lett. 2006, 47, 4995-4998; (e) Yadav, J.
S.; Reddy, M. S.; Rao, P. P.; Prasad, A. R. Stereoselective formal
synthesis of Crocacin C via Prins Cyclization. Synlett. 2007, 13,
2049-2052; (f) Yadav, J. S.; Rao, P. P.; Reddy, M. S.; Rao, N. V.;
Prasad, A. R. Stereoselective synthesis of (+)-cryptocarya diacetate
by an iterative Prins cyclisation and reductive cleavage sequence.
Tetrahedron Lett. 2007, 48, 1469-1471; (g) Yadav, J. S.; Kumar, N.
N.; Reddy, M. S.; .Prasad, A. R. Stereoselective synthesis of
tarchonanthuslactone via the Prins cyclisation. Tetrahedron 2007,
63, 2689-2694; (h) Yadav, J. S.; Rao, P. P.; Reddy, M. S.; Prasad,
A. R. Stereoselective synthesis of basiliskamides A and B via Prins
cyclisation. Tetrahedron Lett. 2008, 49, 5427-5430.
a) Toshima, K.; Jyojima, T.; Miyamoto, N.; Katohno, M.; Nakata,
M.; Mastumura, S. The first total synthesis of concanamycin F
(concanolide A). J. Org. Chem. 2001, 66, 1708. (b) Moune, S.;
Niel, G.; Busquet, M.; Eggleston, I.; Jouin, P. Total synthesis of
dolatrienoic acid: a subunit of dolastatin 14. J. Org. Chem. 1997,
62, 3332.
Inagawa, J.; Hirata, K.; Katsuki, H.; Yamaguchi, M. A rapid
esterification by means of mixed anhydride and its application to
large-ring lactonization. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
Mitsunobu, O. The use of diethyl azodicarboxylate and
triphenylphosphine in synthesis and transformation of natural
products. Synthesis 1981, 1-28.
[2]
[3]
[4]
Paull, K. D.; Hamel, E.; Malspeis, L. Prediction of Biochemical
Mechanism of Action from the In Vitro Antitumor Screen of the
National Cancer Institute. In Cancer Chemotherapeutic Agents;
Foye, W. O., Ed.; American Chemical Society: Washington, DC,
1995.
Boyd, M. R.; Farina, C.; Belfiore, P.; Gagliardi, S.; Kim, J. M.;
Kayakawa, Y.; Beutler, J. A.; Mckee, T. C.; Bowman, B. J.;
Bowman, E. J. Discovery of a novel antitumor benzolactone
enamide class that selectively inhibits mammalian Vacuolar–Type
(H+)-ATPases. J. Pharmacol. Exp. Ther. 2001, 297, 114-120.
For previous synthetic approaches to Salicylihalamides A and B
see ref. (a) Wu, Y.; Esser, L.; De Brabander, J. K. Revision of the
absolute configuration of Salicylihalamide A through asymmetric
total synthesis. Angew. Chem. Int. Ed. 2000, 39, 4308-4310; (b)
Labrecque, D.; Charron, S.; Rej, R.; Blais, C.; Lamothe, S.
Enantioselective total synthesis of salicylihalamides A and B.
Tetrahedron Lett. 2001, 42, 2645-2648; (c) Snider, B. B.; Song, F.
total synthesis of (ꢀ)-Salicylihalamide A. Org. Lett. 2001, 3, 1817-
1820; (d) Smith, A. B.; Zheng, J. A first generation total synthesis
of (+)-Salicylihalamide A. Synlett 2001, 1019-1023; (e) Furstner,
A.; Dierkes, T.; Thiel, O. R.; Blanda, G.ꢀTotal synthesis of (-)-
Salicylihalamide. Chem. Eur. J. 2001, 7, 5286-5298; (f) Wu, Y.;
Liao, X.; Wang, R.; Xie, S. S.; De Brabander, J. K. Total synthesis
and initial structureꢀfunction analysis of the potent V-ATPase
inhibitors Salicylihalamide A and related compounds. J. Am. Chem.
Soc. 2002, 124, 3245-3253; (g) Yadav, J. S.; Srihari, P. Formal
total synthesis of (-)-salicylihalamides A and B. Tetrahedron:
Asymmetry 2004, 15, 81-89; (h) Yadav, J. S.; Sundar Ram Reddy,
P. stereoselective synthesis of the macrocyclic core of (-)-
Salicylihalamides A and B. Synthesis, 2007, (7), 1070-1076.
For the Prins cyclisation, see for example, (a) Barry, C. St. J.;
Crosby, S. R.; Harding, J. R.; Hughes, R. A.; King, C. D.; Parker,
G. D.; Willis, C. L. Stereoselective synthesis of 4-hydroxy-2,3,6-
trisubstituted Tetrahydropyrans. Org. Lett. 2003, 5, 2429-2432; (b)
Yang, X. -F.; Mague, J. T.; Li, C. -J. Diastereoselective Synthesis
of polysubstituted tetrahydropyrans and thiacyclohexanes via
indium trichloride mediated cyclizations. J. Org. Chem. 2001, 66,
739-747; (c) Aubele, D. L.; Wan, S.; Floreancig, P. E. Total
Synthesis of (+)-Dactylolide through an efficient sequential
peterson olefination and prins cyclization reaction. Angew. Chem.
Int. Ed. 2005, 44, 3485-3488; (d) Barry, C. S.; Bushby, N.;
Harding, J. R.; Willis, C. S. Stereoselective synthesis of the
tetrahydropyran core of polycarvernoside A. Org. Lett. 2005, 7,
2683-2686; (e) Cossey, K. N.; Funk, R. L. Diastereoselective
synthesis of 2,3,6-trisubstituted tetrahydropyran-4-ones via prins
cyclizations of enecarbamates: a formal synthesis of (+)-Ratjadone
A. J. Am. Chem. Soc. 2004, 126, 12216-12217; (f) Crosby, S. R.;
Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Prins
cyclizations: labeling studies and application to natural product
synthesis. Org. Lett. 2002, 4, 3407-3410; (g) Marumoto, S.; Jaber,
J. J.; Vitale, J. P; Rychnovsky, S. D. Synthesis of (-)-centrolobine
by prins cyclizations that avoid racemization. Org. Lett. 2002, 4,
[7]
[5]
[8]
[9]
[10]
Grubbs, R. H.; Miller, S. J.; Fu, G. C. Ring-closing metathesis and
related processes in organic synthesis. Acc. Chem. Res. 1995, 28,
446.
[11]
Spectral Data of Selected Compounds: colourless liquid; [ꢀ]25D -2.2
(c = 1.5, CHCl3) Rf = 0.2 (EtOAc: Hexane, 60:40); IR (KBr): ꢁmax
3384, 2921, 2854, 1059 cm-1; 1H NMR (300 MHz, CDCl3): ꢂ 7.35-
7.23 (m, 5H), 4.52-4.43 (m, 2H,), 3.91-3.71 (m, 2H), 3.60-3.30 (m,
5H), 2.02-1.71 (m, 3H), 1.5-1.46 (m, 1H), 1.22-1.09 (m, 1H), 0.95
(d, 3H, J = 6.8 Hz); 13C NMR (75 MHz, CDCl3): ꢂ 138.4, 128.3,
127.5, 76.5, 75.8, 73.0, 72.0, 68.0, 65.7, 37.3, 36.7, 34.1, 12.2,
HRMS (ESI): m/z calcd for C16H24O4Na [M+Na]+ 303.1572, found
303.1587. Spectral Data of Selected Compounds: colourless liquid;
[ꢀ]25D +18.5 (c = 1.5, CHCl3); Rf = 0.5 (EtOAc: Hexane, 20:80); IR
(KBr): ꢁmax 3508, 2930, 2857, 1068 cm-1; 1H NMR (300 MHz,
CDCl3): ꢂ 7.32-7.21 (m, 5H), 5.80-5.66 (m, 1H,), 5.07-4.98 (m,