482
Vol. 58, No. 4
270 MHz on a Varian EM-360 spectrometer using tetramethyl silane (TMS) tallized from EtOH/DMF to give the corresponding carbohydrazides 12a, b.
as an internal standard. Chemical shift (d) values are given in parts per mil-
Nꢀ-(3,4-Diphenylthiazol-2(3H)-ylidene)-1-phenyl-1,4-dihydroindeno[1,2-
lion. The mass spectra were determined using a Varian MAT CH-5 spec- c]pyrazole-3-carbohydrazide 12a: IR (KBr) nmax/cmꢂ1 3248 (NH), 1642
trometer (70 eV). Ethyl (3-hydroxy-1H-inden-2-yl)(oxo)-acetate 217,18); ethyl
1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate 7,24) hydrazonoyl
chlorides36) were prepared according to the procedures reported in the litera-
ture.
2-[(1H-Benzimidazol-2-yl)(hydroxy)methylene]-2,3-dihydro-1H-
inden-1-one 3 A solution of ethyl 2-(2,3-dihydro-1-oxo-1H-inden-2-yl)-2-
(CꢃO); H-NMR (DMSO-d6) d: 3.90 (s, 2H, indane-3-CH2), 7.03 (s, 1H,
thiazole-H), 7.13—7.95 (m, 19H, ArH), 11.15 (s, 1H, NH, D2O-exchange-
able).
1
Nꢀ-(4-(4-Chlorophenyl)-3-phenylthiazol-2(3H)-ylidene)-1-phenyl-1,4-di-
hydroindeno-[1,2-c]pyrazole-3-carbohydrazide 12b: IR (KBr) nmax/cmꢂ1 1648
(CꢃO), 3245 (NH); 1H-NMR (DMSO-d6) d
: 3.92 (s, 2H, indane-3-CH2), 7.01
oxoacetate 2 (4.64 g, 20 mmol) and o-phenylenediamine (2.48 g, 23 mmol) (s, 1H, thiazole-H), 7.18—7.91 (m, 18H, Ar-H), 11.10 (s, 1H, NH, D2O ex-
in glacial acetic acid (30 ml) was refluxed for 4 h. The formed reddish or- changeable).
ange precipitate was isolated by filtration, washed with ethanol, dried and re-
crystallized from AcOH–H2O (2 : 1, v/v). IR (KBr) nmax/cmꢂ1 3161 (NH),
1687 (CꢃO); 1H-NMR (DMSO-d6) d: 4.09 (s, 2H, indane-3-CH2), 7.05—7.67
(m, 8H, ArH), 11.87 (s, 1H, NH, D2O exchangeable), 13.45 (s, 1H, OH, D2O
exchangeable); MS m/z (%) 278 (Mꢁꢁ2, 22), 277 (Mꢁꢁ1, 16), 64 (100).
6-(3-Hydroxy-1H-inden-2-yl)-3-thioxo-3,4-dihydro-1,2,4-triazin-
5(2H)-one 6 To a solution of ethyl 2-(2,3-dihydro-1-oxo-1H-inden-2-yl)-
2-oxoacetate 2 (2.32 g, 10 mmol) and thiosemicarbazide (0.91 g, 10 mmol) in
absolute ethanol (20 ml), three drops of conc. HCl were added and the reac-
tion mixture was refluxed for 5 h. The formed yellow precipitate was iso-
lated by filtration, washed with ethanol, dried and recrystallized from
Nꢀ-(4-Fluorobenzylidene)-1,4-dihydro-1-phenylindeno[1,2-c]pyrazole-
3-carbohydrazide 13 A mixture of 8 (0.29 g, 1 mmol) and 4-flurobenz-
aldehyde (0.12 g, 1 mmol) in absolute ethanol (30 ml) in the presence of few
drops of glacial acetic acid was refluxed for 4 h. The formed solid was fil-
tered off, washed with ethanol dried and crystallized from EtOH/DMF (3 : 1,
1
v/v). IR (KBr) nmax/cmꢂ1 3191 (NH), 1693 (CꢃO); H-NMR (DMSO-d6) d:
3.92 (s, 2H, indane-3-CH2), 7.31—7.92 (m, 13H, ArH), 8.68 (s, 1H,
–CHꢃN), 11.77 (s, 1H, NH, D2O-exchangeable); MS m/z (%) 397 (Mꢁꢁ1,
23), 244 (100).
1,4-Dihydro-N-(1,3-dioxoisoindolin-2-yl)-1-phenylindeno[1,2-c]pyra-
zole-3-carboxamide 14 A mixture of 8 (0.29 g, 1 mmol) and phthalic an-
DMF–H2O (5 : 1, v/v) to give 6. IR (KBr) nmax/cmꢂ1 3303 (OH), 3224, 3146 hydride (0.15 g, 1 mmol) in glacial acetic acid (20 ml) was refluxed for 8 h.
1
(2NH), 1640 (CꢃO); H-NMR (DMSO-d6) d: 3.92 (s, 2H, indane-3-CH2),
The formed solid was filtered off, dried, and crystallized from AcOH/H2O
7.39—7.74 (m, 4H, ArH), 8.69 (s, 1H, NH, D2O-exchangeable), 9.59 (s, 1H, (3 : 1, v/v). IR (KBr) nmax/cmꢂ1 3067 (NH), 1785, 1735, 1690 (3CꢃO); H-
1
NH), 12.89 (s, 1H, OH); MS m/z (%) 261 (Mꢁꢁ2, 46), 277 (Mꢁꢁ1, 16), 55 NMR (DMSO-d6) d: 3.85 (s, 2H, indane-3-CH2), 7.36—8.13 (m, 13H,
(100).
ArH), 10.97 (s, 1H, NH, D2O-exchangeable); MS m/z (%) 420 (Mꢁ, 33),
1,4-Dihydro-1-phenylindeno[1,2-c]pyrazole-3-carbohydrazide 8 Hy- 259 (100).
drazine hydrate (1.0 g, 20 mmol) was added to ethyl 1,4-dihydro-1-phenylin-
deno[1,2-c]pyrazole-3-carboxylate 7 (3.04 g, 10 mmol) in absolute ethanol
Synthesis of the Bis-hydrazones 16a, b A mixture of 8 (0.29 g, 1
mmol) and appropriate hydrazonoyl chlorides 15a, b (1 mmol) in absolute
(40 ml). The reaction mixture was heated under reflux for 4 h and was then ethanol (30 ml) was refluxed for 4 h. The formed solid was filtered off, dried,
left to cool to room temperature. The precipitate that formed was filtered off, and crystallized from EtOH/DMF (2 : 1).
dried and recrystallized from ethanol. IR (KBr) nmax/cmꢂ1 3312—3153
Nꢀ-Phenyl-2-(2-(1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3-car-
1
(NH2, NH), 1669 (CꢃO); H-NMR (DMSO-d6) d: 3.81 (s, 2H, indane-3-
bonyl)hydrazono)propanehydrazonoyl Chloride 16a: IR (KBr)
n
max/cmꢂ1
CH2), 4.50 (s, 2H, NH2, D2O-exchangeable), 7.33—7.81 (m, 9H, ArH), 9.50 3242—3055 (2NH), 1682 (CꢃO); 1H-NMR (DMSO-d6) d: 2.38 (s, 3H,
(s, 1H, NH, D2O-exchangable); MS m/z (%) 290 (Mꢁ, 35), 259 (100).
N-Phenyl-2-(1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carbon- NH, D2O-exchangeable), 10.49 (s, 1H, NH, D2O-exchangeable).
CH3), 3.95 (s, 2H, indane-3-CH2), 7.28—7.69 (m, 14H, ArH), 10.16 (s, 1H,
yl)hydrazine-carbothioamide 9 A mixture of 8 (1.45 g, 5 mmol) and
Nꢀ-(4-Fluorophenyl)-2-(2-(1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3-
phenylisothiocyanate (0.67 g, 5 mmol) in absolute ethanol (30 ml) was
carbonyl)hydrazono)propanehydrazonoyl Chloride 16b: IR (KBr) nmax/cmꢂ1
heated under reflux for 1 h. The formed solid was filtered off, washed with 3246, 3159 (2NH), 1685 (CꢃO); 1H-NMR (DMSO-d6) d: 2.34 (s, 3H, CH3),
ethanol, dried and recrystallized from EtOH/N,N-dimethylformamide (DMF)
3.90 (s, 2H, indane-3-CH2), 7.26—7.71 (m, 13H, ArH), 10.21 (s, 1H, NH,
(3 : 1, v/v). IR (KBr) nmax/cmꢂ1 3209—3107 (3NH), 1642 (CꢃO); 1H-NMR D2O-exchangeable), 10.52 (s, 1H, NH, D2O-exchangeable); MS m/z (%) 486
(DMSO-d6) d: 3.36 (s, 2H, indane-3-CH2), 7.11—7.51 (m, 14H, ArH), 9.45 (Mꢁ, 5), 149 (100).
(s, 1H, NH, D2O-exchangeable), 9.87 (s, 1H, NH, D2O-exchangeable), 10.20
(s, 1H, NH, D2O-exchangeable); MS m/z (%) 427 (Mꢁꢁ2, 8), 426 (Mꢁꢁ1,
Acknowledgements The authors would like to thank Abdelbasset A.
Farahat, Chemistry Department, Georgia State University, Atlanta, Georgia,
12), 426 (Mꢁ, 23), 259 (100).
1,4-Dihydro-Nꢀ-(4-oxo-3-phenylthiazolidin-2-ylidene)-1-phenylin- U.S.A. for recording some of 1H-NMR spectra.
deno[1,2-c]pyrazole-3-carbohydrazide 10
A mixture of 9 (0.425 g,
1 mmol) and chloroacetic acid (0.1 g, 1 mmol) in glacial acetic acid (30 ml)
containing anhydrous sodium acetate (0.33 g, 4 mmol) was heated under re-
flux for 6 h. The reaction mixture was cooled and the resulting precipitate
References
1) Moser H., Boehner B., Foery W., European Patent, EP 268, 554,
Chem. Abstr., 110, 23879 (1988).
was filtered off and recrystallized from ethanol to give 10. IR (KBr) nmax
/
2) Ishii T., Shimortori H., Tanaka Y., Ishikawa K., Japan Patent, JP 01,
168, 675, Chem. Abstr., 112, 35854 (1989).
3) Sekine M., Japan Patent, JP 02, 292, 263, Chem. Abstr., 114, 185497
(1990).
cmꢂ1 3227 (NH), 1651, 1715 (2CꢃO); 1H-NMR (DMSO-d6) d: 3.92 (s, 2H,
indane-3-CH2), 6.92 (s, 2H, thiazolidine-H), 7.29—7.83 (m, 14H, ArH),
9.87 (s, 1H, NH, D2O-exchangeable).
Nꢀ-[5-(4-Fluorobenzylidene)-4-oxo-3-phenylthiazolidin-2-ylidene]-1,4-
dihydro-1-phenylindeno[1,2-c]pyrazole-3-carbohydrazide 11 Method
A: To a solution of 4-thiazolidinone 10 (0.465 g, 1 mmol) and 4-flurobenz-
aldehyde (0.12 g, 1 mmol) in glacial acetic acid (20 ml), anhydrous sodium
acetate (0.33 g, 4 mmol) was added and the reaction mixture was refluxed for
5 h then left to cool at room temperature. The formed solid was filtered off,
dried and recrystallized from EtOH.
Method B: A mixture of 9 (0.425 g, 1 mmol), chloroacetic acid (0.1 g,
1 mmol) and 4-flurobenzaldehyde (0.12 g, 1 mmol) in glacial acetic acid
(20 ml) containing anhydrous sodium acetate (0.33 g, 4 mmol) was heated
under reflux for 5 h. The reaction mixture was left to cool and the formed
solid was filtered off, washed with water, dried and recrystallized from
EtOH. IR (KBr) nmax/cmꢂ1 3230 (NH), 1656, 1692 (2CꢃO); 1H-NMR
(DMSO-d6) d: 3.86 (s, 2H, indane-3-CH2), 7.28—7.86 (m, 18H, ArH), 11.85
(s, 1H, NH, D2O-exchangeable); MS m/z (%) 571 (Mꢁ, 28), 259 (100).
Synthesis of Compounds 12a, b A mixture of 9 (0.425 g, 1 mmol) and
appropriate phenacyl bromide (1 mmol) in absolute ethanol (30 ml) contain-
4) Sohn E., Handle R., Mildenberger H., Buerstell H., Bauer K.,
Bieringer H., Ger. Patent 3, 633, 840, Chem. Abstr., 110, 8202 (1988).
5) Baraldi P. G., Barco A., Benetti S., Manfredini S., Pollini G. P., Simoni
D., Tetrahedron, 43, 235—242 (1987).
6) Wei F., Zhao B.-X., Huang B., Zhang L., Sun C.-H., Dong W.-L., Shin
D.-S., Miao J.-Y., Bioorg. Med. Chem. Lett., 16, 6342 (2006).
7) Oh L. M., Wang H., Shilcrat S. C., Herrmann R. E., Patience D. B.,
Spoors P. G., Sisko J., Org. Proc. Res. Develop., 11, 1032 (2007).
8) Campagna F., Palluotto F., Carotti A., Maciocco E., Farmaco, 59, 849
(2004).
9) Pommery N., Taverne T., Telliez A., Goossens L., Charlier C., Pom-
mery J., Goossens J.-F., Houssin R., Durant F., Hénichart J.-P., J. Med.
Chem., 47, 6195 (2004).
10) Abdel-Wahab B. F., Abdel-Aziz H. A., Ahmed E. M.. Monatsh.
Chem., 140, 601—605 (2009).
11) Larsen J. S., Zahran M. A., Pedersen E. B., Nielsen C., Monatsh.
Chem., 130, 1167—1173 (1999).
ing anhydrous sodium acetate (0.33 g, 4 mmol) was heated under reflux for 12) Fustero S., Roman R., Sanz-Cervera J. F., Simon-Fuentes A., Bueno J.,
6 h. The formed solid was filtered off, washed with water, dried and recrys- Villanova S., J. Org. Chem., 73, 8545—8552 (2008).