F. Xu et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6582–6585
6585
Table 2
Mouse hypothermia data
compound has been studied clinically as a possible treatment for
GERD but was recently dropped from development, in part, due
to liver toxicity issues. The potency of 9d was compared to 11,
12 and 13 in the functional GABAB agonist assay. The pEC50 values
were in the range of 7.4 and 8.1, respectively (Table 3). While the
phosphinic analogues were more potent than R-baclofen (2), com-
pound 9d with a pEC50 of 8.5 is more potent than any of the phos-
phinic acid compounds.
Compound
Dose (mol/kg)
MaxTemp decrease (°C)
Vehicle
2
9d
—
24
0.125
0.25
0.4
0
4.2
0
1
2.4
4.0
0.5
In summary a series of R-baclofen analogs have been prepared
that investigated the effect of substitution at the 3-position of
the phenyl ring. Analogs containing a 4-pyridyl substituent ap-
pended to this position had improved in vitro potency compared
to R-baclofen. The most potent of these compounds, 9d, demon-
strated in vitro GABAB agonist activity in functional assays with
cloned human receptors and in a rat neuronal electrophysiological
assay, appears to cross the blood–brain barrier and exhibits potent
activity in vivo.
Table 3
Aminophosphinic GABAB agonists
Compound
Structure
h-GABAB agonist pEC50
7.4
O
H
2N
P
11
OH
CH3
References and notes
O
P
H
H
2N
12
13
7.6
8.1
OH
1. Froestl, W. Future Med. Chem. 2011, 3, 163.
2. Smith, C. R.; LaRocca, N. G.; Giesser, B. S.; Scheinberg, L. C. Neurology 1991, 41,
1829.
3. Tayacke, R. J.; Lingford-Hughes, A.; Reed, L. J.; Nutt, D. J. Adv. Pharmacol. 2010,
58, 373.
4. Lidums, I.; Lehmann, A.; Checklin, H.; Dent, J.; Holloway, R. H. Gastroenterology
2000, 118, 7.
H
O
2N
P
H
OH
F
5. Yomiya, K.; Matsuo, N.; Tomiyasu, S.; Yoshimoto, T.; Tamaki, T.; Suzuki, T.;
Matoba, M. Am. J. Hosp. Palliat. Med. 2009, 26, 112.
chosen since this assay provides a convenient readout of the cen-
trally-mediated effects of a GABAB receptor ligand. A thermosensi-
tive chip is implanted in the interscapular region of CD-1 mice
under brief isoflurane anesthesia, and the animals are allowed to
recover for at least 1 day. The animals have free access to food
and water throughout the experiment. On the experimental day,
the mice are placed in individual cages. Before dosing, basal tem-
perature recordings are made using a transponder communicating
with a computer for data acquisition. Test compound or controls
are injected intraperitoneally at an appropriate dose. Measure-
ments are then made at 15 min intervals post-dose up to 2 h and
every 30 min thereafter to 4 h (Table 2).
In the mouse hypothermia assay both R-baclofen 2 and com-
pound 9d caused significant body temperature reductions. Doses
of 2 and 9d that caused a similar reduction in body temperature
(4–4.2 °C) suggest that the in vivo potency of 9d in this model is
some 40–50 times that of 2. This is consistent with the 25- to
60-fold functional potency increase observed for 9d relative to
compound 2 in vitro.
6. Taylor, M. C.; Bates, C. P. Br. J. Urol. 1979, 51, 504.
7. Lal, R.; Sukbuntherng, J.; Tai, E. H.; Upadhyay, S.; Yao, F.; Warren, M. S.; Luo, W.;
Bu, L.; Nguyen, S.; Zamora, J.; Peng, G.; Dias, T.; Bao, Y.; Ludwikow, M.; Phan, T.;
Scheuerman, R. A.; Yan, H.; Gao, M.; Wu, Q. Q.; Annamalai, T.; Raillard, S. P.;
Koller, K.; Gallop, M. A.; Cundy, K. C. J. Pharmacol. Exp. Ther. 2009, 330, 911.
8. Keberle, H; Faigle, J. W.; Wilhelm, M. Amino acids having useful
pharmacological properties. Patentschrift (Switz.), 1968.
9. Berthelot, P.; Vaccher, C.; Musadad, A.; Flouquet, N.; Debaert, M.; Luyckx, M. J.
Med. Chem. 1987, 30, 743.
10. Corey, E. J.; Zhang, F.-Y. Org. Lett. 2000, 2, 4257.
11. Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906.
12. Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005,
127, 119.
13. Shao, C.; Yu, H.-J.; Wu, N.-Y.; Tian, P.; Wang, R.; Feng, C.-G.; Lin, G.-Q. Org. Lett.
2011, 13, 788.
´
´
14. Koyrakh, L.; Lujan, R.; Colon, J.; Karschin, C.; Kurachi, Y.; Karschin, A.;
Wickman, K. J. Neurosci. 2005, 25, 11468.
15. Nurse, S.; Lacaille, J.-C. Neuropharmacology 1999, 38, 1733.
16. Quéva, C.; Bremner-Danielsen, M.; Edlund, A.; Ekstrand, A. J.; Elg, S.; Erickson,
S.; Johansson, T.; Lehmann, A.; Mattson, J. P. Br. J. Pharmacol. 2003, 140, 315.
17. Froestl, W.; Mickel, S. J.; Hall, R. G.; von Sprecher, G.; Strub, D.; Baumann, P. A.;
Brugger, F.; Gentsch, C.; Jaekel, J.; Olpe, H-R.; Rihs, G.; Vassout, A.; Waldmeier,
P. C.; Bittiger, H. J. Med. Chem. 1995, 38, 3297.
18. Howson, W.; Mistry, J.; Btoekman, M.; Hills, J. M. Bioorg. Med. Chem. Lett. 1993,
3, 515.
Compound 9d was shown to be more than 10-fold more potent
than R-baclofen. Previously aminophosphinic acids 11 and 12 were
shown to be more potent GABAB agonists than baclofen.17,18 More
recently the 3-fluoro analogue 13 (AZD-3355) was identified as a
potent GABAB agonist with restricted access to the CNS.19 This
19. Alstermark, C.; Amin, K.; Dinn, S. R.; Elebring, T.; Fjellstrom, O.; Fitzpatrick, K.;
Geiss, W. B.; Gottfries, J.; Guzzo, P. R.; Harding, J. P.; Holmen, A.; Kothare, M.;
Lehmann, A.; Mattsson, J. P.; Nilsson, K.; Sunden, G.; Swanson, M.; von Unge, S.;
Woo, A. M.; Wyle, M. J.; Zheng, X. J. Med. Chem. 2008, 51, 4315.