C O M M U N I C A T I O N S
tivity (92% ee) is observed (eq 2).13 As a testament to the benefit
of using directing groups the optimized conditions are very mild
for the hydroformylation of a disubstituted olefin, only 35 °C and
50 psi of CO/H2 (eq 2) are required.
decrease in ee to 76% ee is observed for (E)-4b (Table 1, entries
3 and 4). Phenyl substituted 5a affords the product with good
enantioselectivity though with a modest yield (Table 1, entry 5).
In this case 44% of 5a remains at the end of the reaction
demonstrating that the aldehyde is added selectively ꢀ to the
aromatic ring, rather than the electronically preferred R-position.
Entries 6-9 indicate a variety of functional groups are tolerated
under the reaction conditions. For example substrates with either
benzyl or silyl protected alcohols afford the desired product with
high yields and enantioselectivities (Table 1, entries 6 and 7,
respectively). A phthalamide and ester group are also compatible
and maintain high enantioselectivities (Table 1, entries 8 and 9).
Hydroformylation of a terminal olefin provides the product in 73%
ee similar to the selectivities of the E-olefins, emphasizing the
importance of a cis substituent to obtain excellent enantioselec-
tivities.
We have demonstrated that asymmetric hydroformylation can
be performed with good yield and high enantioselectivity by using
an enantioenriched scaffolding ligand. The scaffolding ligand
induces asymmetry more like a chiral auxiliary rather than a
traditional chiral ligand for asymmetric catalysis in that the substrate
is covalently bound to the group generating the stereoselectivity.
Given the robustness and reliability of chiral auxiliaries to induce
asymmetry, we believe scaffolding ligands will be able to afford
high enantioselectivity in a broad range of reactions.
Table 1. Substrate Scope for Enantioselective Hydroformylation
Acknowledgment. We thank Dr. Bo Li for determining the
X-ray structure in Figure 2. We thank the Kingsbury and Hoveyda
groups for use of their SFC and HPLC, respectively. We thank the
ACS-PRF (DNI-5001400) and NIGMS (RO1GM087581) for fund-
ing this project. Mass spectrometry instrumentation at Boston
College is supported by funding from the NSF (DBI-0619576).
Supporting Information Available: Experimental details, com-
pound characterization, and determination of absolute configurations.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Van Leeuwen, P. W. N. M. Claver, C. Rhodium Catalyzed Hydro-
formylation; Springer-Verlag: New York, 2002; Vol. 22. (b) Cornils, B.
Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic
Compounds; Wiley: Weinheim, 2002; Vol. 1, Chapter 2. (c) Weissermel,
K. Arpe, H. S. Industrial Organic Chemsitry; Wiley: Weinheim, 2003, pp
127-141. (d) Chiusoli, G. P. Maitlis, P. M. Metal-Catalysis in Industrial
Organic Processes; RSC Publishing: Cambridge, U.K., 2006.
(2) For reviews on asymmetric hydroformylation, see: (a) Gual, A.; Godard,
C.; Castillon, S.; Claver, C. Tetrahedron: Asymmetry 2010, 21, 1135–1146.
(b) Klosin, J.; Landis, C. R. Acc. Chem. Res. 2007, 40, 1251–1259. (c)
Dieguez, M.; Pamies, O.; Claver, C. Tetrahedron: Asymmetry 2004, 15,
2113–2122. (d) Agbossou, F.; Carpentier, J. F.; Mortreux, A. Chem. ReV.
1995, 95, 2485–2506.
(3) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115,
7033–7034.
a (i)15 mol % (MeO)-1, 0.05 mol % p-TsOH, 45 °C, benzene; (ii)
2 mol % Rh(acac)(CO)2, 35 °C, 50 psi of CO/H2, (iii) NaBH4,
MeOH. b Standard conditions except 1.75 mol % Rh(acac)(CO)2 and
0.03 mol % p-TsOH were used. c Standard conditions except 1.5 mol
% Rh(acac)(CO)2 was used. d Standard conditions except 1.75 mol %
Rh(acac)(CO)2 was used. e Reaction performed with 500 mg (2.8 mmol)
of 3a.
(4) Whiteker, G. T., Babin, J. E. WO9393839, 1993.
(5) For recent examples of enantioselective hydroformylation, see: (a) Mazuela,
J.; Coll, M.; Pamies, O.; Dieguez, M. J. Org. Chem. 2009, 74, 5440–5445.
(b) Chikkali, S. H.; Bellini, R.; Berthon-Gelloz, G.; van der Vlugt, J. I.; de
Bruin, B.; Reek, J. N.H. Chem. Commun. 2010, 46, 1244–1246. (c) Zhang,
X.; Cao, B.; Yan, Y.; Yu, S.; Ji, B.; Zhang, X. Chem.sEur. J. 2010, 16,
871–877. (d) Watkins, A. L.; Hashiguchi, B. G.; Landis, C. R. Org. Lett.
2008, 10, 4553–4556. (e) Zhao, B. G.; Peng, X. G.; Wang, Z.; Xia, C. G.;
Ding, K. L. Chem.sEur. J. 2008, 14, 7847–7857. (d) Yan, Y. J.; Zhang,
X. M. J. Am. Chem. Soc. 2006, 128, 7198–7202. (f) Clark, T. P.; Landis,
C. R.; Freed, S. L.; Klosin, J.; Abboud, K. A. J. Am. Chem. Soc. 2005,
127, 5040–5042. (g) Breeden, S.; Cole-Hamilton, D. J.; Foster, D. F.;
Schwarz, G. J.; Wills, M. Angew. Chem., Int. Ed. 2000, 39, 4106–4108.
(h) McDonald, R. I.; Wong, G. W.; Neupane, R. P.; Stahl, S. S.; Landis,
C. R. J. Am. Chem. Soc. 2010, 132, 14027–14029.
(6) Zhang, X. W.; Coo, B. N.; Yu, S. C.; Zhang, X. M. Angew. Chem., Int.
Ed. 2010, 49, 4047–4050.
(7) (a) Lightburn, T. E.; Dombrowski, M. T.; Tan, K. L. J. Am. Chem. Soc.
2008, 130, 9210–9211. (b) Worthy, A. D.; Gagnon, M. M.; Dombrowski,
M. T.; Tan., K. L. Org. Lett. 2009, 11, 2764–2767. (c) Sun, X.; Frimpong,
K.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 11841–11843.
Having optimized the reaction parameters we investigated the
substrate scope. As stated previously (Z)-3a yields the desired
product in excellent enantioselectivity (Table 1, entry 1). When
(E)-3b is hydroformylated the product is formed with good
enantioselectivity (80% ee) and with the same absolute sense of
enantioinduction (Table 1, entry 2). When the olefin is substituted
with a more sterically demanding cyclohexyl group, the high
enantioselectivity is maintained at 86% ee for the Z-olefin but a
9
14758 J. AM. CHEM. SOC. VOL. 132, NO. 42, 2010