Isoreticular Chiral MOFs for Asymmetric Alkene Epoxidation
A R T I C L E S
synthesis provides a unique opportunity for rational design and
development of versatile MOFs as a new class of functional
materials.
structing isoreticular MOFs. These sterically demanding SBUs have
been shown to sustain non-interpenetrated MOF structures, but
the tendency to form interpenetrated networks increases as the
bridging ligands become longer. Such interpenetrations can
severely reduce or even eliminate the interior void space of the
MOFs. A few reports have recently appeared on controlling
framework catenation by varying reaction temperature or reagent
concentration,36,44 templating with oxalic acid,45 introducing
space-filling groups on the ligands,46 and employing solvent
molecules of different sizes as templates.39
In this work, we hypothesize that isoreticular chiral MOFs
(CMOFs) of tunable open channel sizes can be constructed from
[Zn4(µ4-O)(O2CR)6] SBUs and tunable Mn-Salen-derived di-
carboxylic acids. Chiral Salen ligands, such as (R,R)-1,2-
cyclohexanediamino-N,N′-bis(3-tert-butyl-salicylidene), have
been established as one of the few privileged ligand systems
for asymmetric catalysis.47 Mn-Salen complexes have, for
example, been shown to be highly effective in catalyzing
asymmetric epoxidation reactions of unfunctionalized olefins.48-54
Several reports have used Salen-type ligands to construct
MOFs.55-57 For example, Kitagawa et al. synthesized an achiral
Zn-MOF using M-salphdc (M ) Cu(II), Co(II), and Ni(II);
salphdc ) N,N′-phenylenebis(salicylideneimine)dicarboxylic
acid) building blocks,58 whereas Chen et al. studied hydrogen
uptake with mixed metal MOFs constructed from the achiral
Cu(Pyen) structure (Pyen-H2 ) 5-methyl-4-oxo-1,4-dihydro-
pyridine-3-carbaldehyde).59 Mirkin et al. studied the intercon-
version between amorphous and crystalline microparticles that
are built from Ni-salen-dicarboxylic acid and an excess amount
of Ni(OAc)2 ·4H2O.56 Cui et al. carried out chiral recognition
and separation using a 2-D coordination polymer built from
unsymmetrical chiral Schiff base metal complexes.60 Hupp et
al. constructed a chiral MOF based on the Mn-Salen-derived
Because of their mild synthetic conditions, MOFs are
particularly suited for immobilizing well-defined molecular
catalysts, leading to a new generation of solid catalysts with
uniform catalytic sites and open channel structures for shape-,
size-, chemo-, and enantioselective reactions. The ability to
easily recover and reuse such MOF-based heterogeneous
catalysts is also highly desirable for reducing processing and
waste disposal costs in large-scale reactions. Compared to other
immobilized catalytic systems, MOFs can have well-defined,
single-crystalline solid structures, unprecedentedly high catalyst
loadings, more uniform and accessible catalytic centers, and
enhanced catalytic activity by eliminating multimolecular
catalyst deactivation pathways.15,17,18
Although a large number of MOFs have been examined as
heterogeneous catalysts, most of these studies rely on the
intrinsic catalytic activity (e.g., weak Lewis acidity) of the metal-
connecting points.15,17,23-25 A more rational strategy than such
an “opportunistic” approach is to introduce well-defined mo-
lecular catalysts into the MOF structures,15,18,23,25 which can
lead to a new generation of heterogeneous catalysts that are
capable of catalyzing more advanced and value-added reactions,
such as enantioselective reactions. Post-synthesis modification
(PSM) has recently been successfully used to generate highly
active and selective MOF catalysts,26-28 but this method tends
to reduce the open channel sizes during the PSM process and
hence negatively impacts the performance of MOF catalysts by
slowing down substrate and product diffusion through the
channels. Direct incorporation of a well-defined homogeneous
catalyst (or precatalyst) into the framework of a MOF represents
an attractive alternative that has so far been under-explored.29-31
We report here the rational design of a family of isoreticular
chiral MOFs based on Mn-Salen-derived bridging ligands and
the applications of these solid catalysts in highly enantioselective
alkene epoxidation reactions.
(40) Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons,
J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.;
Hubberstey, P.; Champness, N. R.; Schroder, M. J. Am. Chem. Soc.
2009, 131, 2159.
(41) Wu, S.; Ma, L.; Long, L. S.; Zheng, L. S.; Lin, W. Inorg. Chem.
2009, 48, 2436.
Isoreticular MOFs with the same framework topology but
tunable pore and channel sizes have been constructed by linking
metal-coordinated secondary building units (SBUs) with bridging
ligands of varied length.32-43 Among the many metal-coordinated
SBUs, [Zn4(µ4-O)(O2CR)6],36,37 [Cu2(sol)2(O2CR)4],38-41 and
[Zr6(O)4(OH)4(O2CR)12]42,43 are most commonly used for con-
(42) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
(43) Guillerm, V.; Gross, S.; Serre, C.; Devic, T.; Bauer, M.; Ferey, G.
Chem. Commun. 2010, 46, 767.
(44) Zhang, J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J.
J. Am. Chem. Soc. 2009, 131, 17040.
(45) Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou,
H. C. J. Am. Chem. Soc. 2007, 129, 1858.
(23) Lin, W. B. J. Solid State Chem. 2005, 178, 2486.
(24) Wang, Z.; Chen, G.; Ding, K. L. Chem. ReV. 2009, 109, 322.
(25) Lin, W. B. MRS Bull. 2007, 32, 544.
(46) Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. J. Am.
Chem. Soc. 2010, 132, 950.
(47) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691.
(48) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Guler, M. L.; Ishida, T.;
Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948.
(49) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am.
Chem. Soc. 1990, 112, 2801.
(26) Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127,
8940.
(27) Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park,
S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524.
(28) Tanabe, K. K.; Cohen, S. M. Angew. Chem., Int. Ed. 2009, 48, 7424.
(29) Hu, A.; Ngo, H. L.; Lin, W. J. Am. Chem. Soc. 2003, 125, 11490.
(30) Hu, A.; Ngo, H. L.; Lin, W. Angew. Chem., Int. Ed. 2003, 42, 6000.
(31) Cho, S. H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt,
T. E. Chem. Commun. 2006, 2563.
(50) Katsuki, T. Synlett 2003, 281–297.
(51) Venkataramanan, N. S.; Kuppuraj, G.; Rajagopal, S. Coord. Chem.
ReV. 2005, 249, 1249.
(52) Baleizao, C.; Garcia, H. Chem. ReV. 2006, 106, 3987–4043.
(53) Canali, L.; Sherrington, D. C. Chem. Soc. ReV. 1999, 28, 85.
(54) Gupta, K. C.; Sutar, A. K.; Lin, C. C. Coord. Chem. ReV. 2009, 253,
1926.
(32) Lin, W. B.; Evans, O. R.; Xiong, R. G.; Wang, Z. Y. J. Am. Chem.
Soc. 1998, 120, 13272.
(33) Evans, O. R.; Xiong, R. G.; Wang, Z. Y.; Wong, G. K.; Lin, W. B.
Angew. Chem., Int. Ed. 1999, 38, 536.
(55) Oh, M.; Mirkin, C. A. Angew. Chem., Int. Ed. 2006, 45, 5492.
(56) Jeon, Y. M.; Heo, J.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129,
7480.
(34) Evans, O. R.; Lin, W. B. Chem. Mater. 2001, 13, 3009.
(35) Evans, O. R.; Lin, W. B. Chem. Mater. 2001, 13, 2705.
(36) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe,
M.; Yaghi, O. M. Science 2002, 295, 469.
(57) Jung, S.; Oh, M. Angew. Chem., Int. Ed. 2008, 47, 2049.
(58) Kitaura, R.; Onoyama, G.; Sakamoto, H.; Matsuda, R.; Noro, S.;
Kitagawa, S. Angew. Chem., Int. Ed. 2004, 43, 2684.
(59) Chen, B.; Zhao, X.; Putkham, A.; Hong, K.; Lobkovsky, E. B.;
Hurtado, E. J.; Fletcher, A. J.; Thomas, K. M. J. Am. Chem. Soc.
2008, 130, 6411.
(37) Li, Q.; Zhang, W.; Miljanic, O. S.; Sue, C. H.; Zhao, Y. L.; Liu, L.;
Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Science 2009, 325, 855.
(38) Ma, L.; Lee, J. Y.; Li, J.; Lin, W. Inorg. Chem. 2008, 47, 3955.
(39) Ma, L.; Lin, W. J. Am. Chem. Soc. 2008, 130, 13834.
(60) Yuan, G.; Zhu, C.; Xuan, W.; Cui, Y. Chemistry 2009, 15, 6428.
9
J. AM. CHEM. SOC. VOL. 132, NO. 43, 2010 15391