M. Walter et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5879–5882
5881
led to pronounced differences in hH3R binding. Affinities vary from
the low nanomolar concentration range to the complete loss of
receptor binding.
In compounds 1–4 the first basic moiety in the western part of
the structural blueprint is represented by a dimethylamino func-
tion. These derivatives showed only weak binding behaviour with
Ki values ranging from 150 to >1000 nM. Hence, we replaced the
(dimethylamino)alkyl group by an alkylated piperidine.
Introduction of an additional basic moiety often leads to im-
proved receptor binding caused by an additional beneficial interac-
tion with the receptor’s binding pocket (Glu206).7 This effect can
be noticed in compounds 5 and 6, which both showed a compara-
ble affinity in the nanomolar concentration range (Ki values of
24 nM and 14 nM, respectively). The analogue compound of li-
gands 5 and 6, the benzyl amine 7, showed decreased receptor
binding (Ki value of 261 nM). Possibly, the phenyl ring sterically
hindered the interaction of the second basic moiety with the ligand
binding site. The incorporation of a third basic moiety (ligand 8) of-
fered no further enhancement of affinity compared to that of com-
pounds 5 and 6. Receptor binding remained in the low nanomolar
concentration range (Ki value of 20 nM). Dibasic compounds show
a certain potential to accumulate centrally. As a consequence they
might induce unwanted side effects,21 on which one must pay
attention in further developments.
receptor binding than its substituents. SAR of the presented ligands
indicated additional basic moieties (compounds 5, 6, 8) and
enlargement of the molecule by lipophilic residues (compound
13, ST-1025) as major reason for high affine hH3R antagonists.
We proved the acceptance of polar moieties and therefore the var-
iability in the core region of the hH3R antagonist/inverse agonist
blueprint. Research concerning this variability by further optimisa-
tion of the thiazole derivatives and the incorporation of other het-
erocycles are awaited for following investigations.
Acknowledgments
This work was partially supported by the COST action BM0806
‘Recent Advances in Histamine Receptor H4R Research’, the Else
Kröner-Fresenius-Stiftung, and the Hesse LOEWE projects LiFF
and NeFF.
Supplementary data
Supplementary data (analytical data of parent compounds)
associated with this article can be found, in the online version, at
References and notes
The exchange of the amino group in the fused thiazole structure
either by non-polar methylene (compound 9) or polar ether func-
tions (compound 10) revealed the importance of additional basic
moieties for receptor binding. Both modifications led to decreased
affinities (9 and 10 vs 5) with Ki values of about 350 nM.
1. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young,
J. M.; Schunack, W.; Levi, R.; Haas, H. L. Pharmacol. Rev. 1997, 49, 253.
2. Sander, K.; Kottke, T.; Stark, H. Biol. Pharm. Bull. 2008, 31, 2163.
3. (a) Leurs, R.; Bakker, R. A.; Timmerman, H.; de Esch, I. J. P. Nat. Rev. Drug Discov.
2005, 4, 107; (b) Esbenshade, T. A.; Browman, K. E.; Bitner, R. S.; Strakhova, M.;
Cowart, M. D.; Brioni, J. D.; Br. J. Pharmacol. 2008, 154, 1166.
The 5-bromo-4-phenyl derivative 11 offered a moderate bind-
ing behaviour (Ki value of 93 nM). Exchange of bromo to methyl
substituent in compound 12 led to a slight improvement in recep-
tor binding (Ki value of 41 nM), whereas the addition of a second
phenyl residue in compound 13 evoked high affinity at the hH3R
(Ki value of 11.2 nM). Obviously, affinity is influenced by lipophil-
icity, steric as well as electronic effects. Whereas electron-with-
drawing properties showed detrimental effects on binding
behaviour (11 vs 12 and 13), increased lipophilicity is advanta-
geous (12 < 13). Positive effects on hH3R affinity of bulky/lipophilic
residues as substituents in the eastern part of the molecule have
previously been reported in other classes.22
Incorporation of a carbonyl function next to the heterocycle led
to reduced receptor binding. Compound 14 showed an affinity in
the submicromolar concentration range (Ki value of 155 nM). The
conformationally constrained derivative 15 completely lost hH3R
affinity. Due to the sterically modified constitution of the carbonyl
moiety as hydrogen bond acceptor, electronic properties were lar-
gely modified (14 vs 15), which may cause impairment of affinity.
In comparison to the dimethylamino motif the 1-(3-oxypro-
pyl)piperidine element in the western part of the molecule, which
was kept constant in compounds 5–15, offered higher receptor
binding. Only hH3R affinity of compound 4 with a Ki value of
153 nM was increased in contrast to the inactive piperidine ana-
logue 15. The affinity of compound 4 was even comparable to
the non-constrained carbonyl analogue 14. These opposing effects
of the dimethylamino compounds (1–3 vs 4) clearly demonstrated
the limitations of SAR within our series of thiazole-containing
compounds.
4. Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Nature 1983, 302, 832.
5. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Hurvar, A.;
Jackson, M. R.; Erlander, M. G. Mol. Pharmacol. 1999, 55, 1101.
6. (a) Célanire, S.; Wijtmans, M.; Talaga, P.; Leurs, R.; de Esch, I. J. P. Drug Discovery
Today 2005, 10, 1613; (b) Célanire, S.; Lebon, F.; Stark, H. In The Third Histamine
Receptor; Vohora, D., Ed.; CRC Press, Taylor and Francis LLC: New York, 2009; pp
103–165; (c) Gemkow, M. J.; Davenport, A. J.; Harich, S.; Ellenbroek, B. A.;
Cesura, A.; Hallett, D. Drug Discovery Today 2009, 14, 509; (d) Sander, K.; von
Coburg, Y.; Camelin, J.-C.; Ligneau, X.; Rau, O.; Schubert-Zsilavecz, M.;
Schwartz, J.-C.; Stark, H. Bioorg. Med. Chem. Lett. 2010, 20, 1581.
7. (a) Axe, F. U.; Bembenek, S. D.; Szalma, S. J. Mol. Graphhics Modell. 2006, 24, 456;
(b) Schlegel, B.; Laggner, C.; Meier, R.; Langer, T.; Schnell, D.; Seifert, R.; Stark,
H.; Holtje, H. D.; Sippl, W. J. Comput. Aided Mol. Des. 2007, 21, 437; (c) Roche, O.;
Nettekoven, M.; Vifian, W.; Rodriguez Sarmiento, R. M. Bioorg. Med. Chem. Lett.
2008, 18, 4377.
8. (a) Ganellin, C. R.; Leurquin, F.; Piripitsi, A.; Arrang, J. M.; Garbarg, M.; Ligneau,
X.; Stark, H.; Schunack, W.; Schwartz, J. C. In Histamine Research in the New
Millennium; Watanabe, T., Timmerman, H., Yanai, K., Eds.; Elsevier Science:
Amsterdam, 2001; pp 25–31; (b) Berlin, M.; Boyce, C. W. Expert Opin. Ther.
Patents 2007, 17, 675; (c) Wijtmans, M.; Leurs, R.; de Esch, I. Expert Opin.
Investig. Drugs 2007, 16, 967; (d) Raddatz, R.; Tao, M.; Hudkins, R. L. Curr. Top.
Med. Chem. 2010, 10, 153.
9. Schwartz, J.-C.; Arrang, J.-M.; Garbarg, M.; Lecomte, J.-M.; Ligneau, X.;
Schunack, W. G.; Stark, H.; Ganellin, C. R.; Leurquin, F.; Elz, S.; Patent
EP0982300 A2, 2000.
10. Bordi, F.; Mor, M.; Morini, G.; Plazzi, P. V.; Silva, C.; Vitali, T.; Caretta, A.
Farmaco 1994, 49, 153.
11. Bailey, N; Pickering, P. L.; Wilson, D. M. PCT Int. Appl. WO 2006097691, 2006.
12. Black, L. A.; Cowart, M. D.; Gfesser, G. A.; Wakefield, B. D.; Altenbach, R. J.; Liu,
H.; Zhao, C.; Hsieh, G. C. PCT Int. Appl. WO 2009085945 A1, 2009.
13. Denonne, F.; Atienzar, F.; Célanire, S.; Christophe, B.; Delannois, F.; Delaunoy,
C.; Delporte, M.-L.; Durieu, V.; Gillard, M.; Lallemand, B.; Lamberty, Y.; Lorent,
G.; Vanbellinghen, A.; Van houtvin, N.; Verbois, V.; Provins, L. ChemMedChem
2010, 5, 206.
14. Rao, A. U.; Palani, A.; Chen, X.; Huang, Y.; Aslanian, R. G.; West, R. E., Jr.;
Williams, S. M.; Wu, R.-L.; Hwa, J.; Sondey, C.; Lachowicz, J. Bioorg. Med. Chem.
Lett. 2009, 19, 6176.
15. (a) Hantzsch, A.; Traumann, V. Chem. Ber. 1888, 21, 938; (b) Wiley, R. H.;
England, D. C.; Behr, L. C. Org. React. 1951, 6, 367.
16. Gadad, A. K.; Palkar, M. B.; Anand, K.; Noolvi, M. N.; Boreddy, T. S.; Wagwade, J.
Bioorg. Med. Chem. 2008, 16, 276.
We successfully introduced polar thiazo-2-yl ether moieties in
the central core of the hH3R antagonist structural blueprint. The
different substituents on positions 4 and 5 of the heterocycle led
to a great variation in hH3R affinity ranging from nanomolar bind-
ing strength to completely loss of affinity. Obviously, in our series
of thiazoles the heterocycle seemed to have a lower impact on
17. Butler, R. N. Chem. Rev. 1975, 75, 241.
18. Doyle, M. P.; Siegfried, B.; Dellaria, J. F., Jr. J. Org. Chem. 1977, 42, 2426.
19. Isensee, K.; Amon, M.; Garlapati, A.; Ligneau, X.; Camelin, J.-C.; Capet, M.;
Schwartz, J.-C.; Stark, H. Bioorg. Med. Chem. Lett. 2009, 19, 2172.