294
F. Borbone et al. / Dyes and Pigments 88 (2011) 290e295
IR (KBr) nmax: 2927 (w), 2215 (w), 1752 (m), 1733 (m), 1599 (m),
1582 (m), 1557 (m), 1520 (m), 1409 (w), 1312 (w), 1243 (m), 1210
(m), 1125 (s), 1098 (s), 873 (w), 831 (w), 765 (w), 728 (w), 643 (w).
HRMS calcd for C29H23ClN6O6S2: 650.08. Found: 650.60. Calcd for
C29H23ClN6O6S2: C, 53.49; H, 3.56; N,12.91. Found: C, 53.55; H, 3.98;
N, 12.66.
Dye f: 1H NMR (CDCl3; 200 MHz)
d: 2.08 (s, 6H); 2.34 (s, 3H);
3.89 (s, 3H); 3.99 (t, 4H, J ¼ 5.4 Hz); 4.39 (t, 4H, J ¼ 5.4 Hz); 7.37
(s, 1H); 7.87 (m, 2H); 7.95 (m, 1H); 8.22 (s, 1H); 8.83 (d, 1H,
J ¼ 7.7 Hz); 9.07 (s, 1H); 9.17 (s, 1H). 13C NMR (THF-d8; 200 MHz)
d:
21.47, 22.33, 31.74, 36.05, 56.30, 57.32, 59.54, 61.86, 63.94, 105.75,
119.13, 123.59, 123.95, 126.86, 127.35, 127.60, 129.84, 131.10, 131.53,
133.67, 136.25, 136.91, 137.54, 139.13, 141.09, 153.64, 169.81, 171.48.
IR (KBr) nmax: 2946 (w), 2210 (w), 1739 (m), 1698 (m), 1605 (m),
1582 (m), 1549 (m), 1505 (s), 1463 (m), 1438 (m), 1374 (m), 1238
(m), 1198 (m), 1172 (s), 1136 (s), 1096 (s), 1043 (s), 951 (w), 922 (w),
660 (w). HRMS calcd for C32H28ClN7O8S2: 737.11. Found: 737.62.
Calcd for C32H28ClN7O8S2: C, 52.07; H, 3.82; N, 13.28. Found: C,
52.22; H, 4.03; N, 13.31.
Fig. 6. Thermogravimetric analysis of the dyes.
containing 4 mL acetic anhydride at reflux for 4 h. The acetylated
chromophore was precipitated in 100 mL hexane and purified by
chromatography. Yield: 72%.
Dye d: 1,3-Bis(dicyanomethylidene)indane (0.683 g, 2.82 mmol)
and compound a (1.00 g, 2.82 mmol) were stirred in 12 mL acetic
anydride at 70 ꢁC for 4 h. The product was precipitated in 200 mL
hexane and purified by chromatography. Yield: 43%.
1H NMR (CDCl3; 200 MHz)
d
: 2.07 (s, 6H); 3.82 (t, 4H, J ¼ 5.8 Hz);
4.35 (t, 4H, J ¼ 5.8 Hz); 6.90 (d, 2H, J ¼ 8.8 Hz); 7.78 (m, 2H); 7.95
(d, 1H, J ¼ 7.4 Hz); 8.00 (d, 2H, J ¼ 8.8 Hz); 8.70 (d, 1H, J ¼ 5.8 Hz);
8.97 (d, 1H, J ¼ 28.8 Hz). 13C NMR (CDCl3; 200 MHz)
d: 20.80, 30.55,
1H NMR (CDCl3; 300 MHz)
d
: 2.04 (s, 6H); 3.82 (t, 4H, J ¼ 6.0 Hz);
50.16, 61.07, 112.63, 112.79, 124.35, 125.08, 125.62, 125.73, 128.72,
128.82, 133.55, 134.89, 135.86, 137.28,140.39, 140.79,144.93,153.95,
170.69, 182.27, 188.40. IR (KBr) nmax: 2929 (w), 2219 (w), 1735 (m),
1700 (w), 1599 (m), 1542 (m), 1466 (w), 1240 (m), 1216 (m), 1198
(m), 1115 (s), 1050 (m), 1020 (w), 990 (w), 875 (w), 833 (w), 723 (w).
HRMS calcd for C30H23ClN6O5S: 614.11. Found: 614.71. Calcd for
C30H23ClN6O5S: C, 58.58; H, 3.77; N, 13.66. Found: C, 58.63; H, 4.12;
N, 13.42.
4.33 (t, 4H, J ¼ 6.0 Hz); 6.89 (d, 2H, J ¼ 9.0 Hz); 7.79 (d, 2H,
J ¼ 4.2 Hz); 7.99 (d, 2H, J ¼ 9.0 Hz); 8.55 (m, 2H); 8.69 (s, 1H). 13C
NMR (CDCl3; 200 MHz) d: 20.84, 50.20, 61.02, 77.35, 112.93, 113.03,
125.15, 126.00, 126.08, 129.42, 129.56, 131.19, 131.83, 135.16, 144.84,
152.70, 154.59, 170.72, 179.81. IR (KBr) nmax: 2950 (w), 2220 (w),
1746 (m),1595 (m),1552 (m),1463 (m),1244 (m),1225 (m),1132 (s),
1051 (m), 872 (w), 835 (w), 718 (w). HRMS calcd for C33H23ClN8O4S:
662.13. Found: 662.64. Calcd for C33H23ClN8O4S: C, 59.77; H, 3.50;
N, 16.90. Found: C, 59.64; H, 3.76; N, 16.62.
The same procedure was applied for the synthesis of chromo-
phores e and f by using suitable amounts of compounds a and
b respectively.
Dye e: 1H NMR (CDCl3; 200 MHz)
d: 2.06 (s, 6H); 3.83 (t, 4H,
Acknowledgement
J ¼ 5.8 Hz); 4.34 (t, 4H, J ¼ 5.8 Hz); 6.91 (d, 2H, J ¼ 9.0 Hz); 7.88 (m,
3H); 7.99 (m, 2H); 8.85 (d, 1H, J ¼ 7.6 Hz); 9.10 (s, 1H). 13C NMR
Thanks are due to Centro Interdipartimentale di Metodologie
Chimico Fisiche (CIMCF) of University of Naples Federico II for X-ray
and NMR facilities.
(CDCl3; 200 MHz) d: 20.97, 50.19, 61.07, 73.97, 113.00, 113.99, 114.29,
122.47, 122.95, 126.12, 128.82, 129.09, 131.18, 135.06, 135.73, 138.87,
144.76, 151.16, 154.12, 154.55, 170.88, 182.96.
References
Table 2
[1] Wolff JJ, Wortmann R. Organic materials for second-order non-linear optics.
Adv Phys Org Chem. 1999;32:121e217.
Crystal data and structure refinement details for e.
[2] Dalton L. Polymers for photonics applications I. Adv Polym Sci. 2002;158:
1e86.
[3] Dalton LR. Rational design of organic electro-optic materials. J Phys Condens
Matter 2003;15:R897e934.
[4] Kajzar F, Lee KS, Jen AKY. Polymeric materials and their orientation techniques
for second-order nonlinear optics. Adv Polym Sci. 2003;161:1e85.
[5] Dalton LR, Sullivan PA, Bale DH. Electric field poled organic electro-optic
materials: state of the art and future prospects. Chem Rev. 2010;110
(1):25e55.
[6] Luo J, Haller M, Li H, Tang HZ, Jen AK. A side chain dendronized nonlinear
optical polyimide with large and thermally stable electro-optic activity.
Macromolecules 2004;37:248e50.
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
C29H23ClN6O6S2/CHCl3
770.47
173(2) K
0.71073 Å
Triclinic
P ꢀ 1
Unit cell dimensions
a ¼ 10.028(2) Å
b ¼ 15.513(2) Å
c ¼ 23.183(7) Å
a
b
g
¼ 102.49(2)ꢁ
¼ 91.62(2)ꢁ
¼ 104.84(1)ꢁ
[7] Kang JW, Kim TD, Luo J, Haller M, Jen AK. Very large electro-optic coefficient
from in situ generated side-chain nonlinear optical polymers. Appl Phys Lett.
2005;87(071109):1e3.
Volume
Z
Calculated density
Absorption coefficient
F(000)
3390(1) Å3
4
[8] Park SK, Do JY, Ju JJ, Park S, Kim MS, Lee M-H. Nonlinear optical problem
1.510 Mg/m3
applicable for all optical wavelength converters in communication bands near
1.5
mm. Mater Lett. 2005;59:2872e5.
0.525 mmꢀ1
1576
3.04e25.00ꢁ
[9] Centore R, Riccio P, Fusco S, Carella A, Quatela A, Schultzmann S, et al.
Nonlinear optical properties of regioregular main-chain polyesters. J Polym
Sci, Part A: Polym Chem. 2006;45:2719e25.
[10] Borbone F, Carella A, Caruso U, Roviello G, Tuzi A, Dardano P, et al. Large
second order NLO activity in poly(4-vinylpyridine) grafted with Pd(II) and Cu
(II) chromophoric complexes with tridentate bent ligands containing
heterocycles. Eur J Inorg Chem; 2008:1846e53.
q
range for data collection
Reflections collected/unique
Data/restraints/parameters
Goodness-of-fit on F2
Final R indices [I > 2
R indices (all data)
55296/11803 [R(int) ¼ 0.2854]
11803/21/863
1.002
R1 ¼ 0.0959, wR2 ¼ 0.2047
R1 ¼ 0.2651, wR2 ¼ 0.2788
0.733 and ꢀ0.476 eAꢀ3
s
(I)]
[11] Brusatin G, Abbotto A, Beverina L, Pagani GA, Casalboni M, Sarcinelli F, et al.
Poled solegel materials with heterocycles pushepull chromophores that
Largest diff. peak and hole