6230
R. Kurukulasuriya et al. / Bioorg. Med. Chem. Lett. 16 (2006) 6226–6230
Table 2. Human and rat DPPIV binding
fused imidazoles. Compound 7 was found to be a potent
and selective DPPIV inhibitor, but it showed a signifi-
cant loss of activity in the presence of plasma. Com-
pound 20 showed minimal potency changes in the
presence of plasma. Hence the shift in potency of 7
was attributed to plasma instability and not protein
binding. X-ray analysis of 7 bound to DPPIV indicates
that the binding mode is similar to the parent xanthine
6. Xanthine mimetics allowed us to unravel the key
structural features important for potent DPPIV activity
while providing good selectivity and no species specific-
ity enabling them to be studied in rodent models of dia-
betes. These attributes make them excellent compounds
to study DPPIV inhibition in vivo as well as assist in
designing future DPPIV inhibitors based on this impor-
tant class of heterocycles.
Compound
h-DPPIV
(0% plasma)
Ki (nM)
r-DPPIV
(0% plasma)
Ki (nM)
r-DPPIV
(18% plasma)
Ki (nM)
6
7
2
2
3
2
7
600
ND
24
19
20
450
11
ND
17
Table 3. Inhibition of other peptidases for selected compounds
(Ki = nM)
Compound
DPP8
DPP9
POP
6
7
>30,000
>3000
>3000
>3000
>30,000
>3000
ND
>30,000
>30,000
>30,000
>30,000
ND
>3000
ND
ND
8
13
15
20
>3000
ND
References and notes
>30,000
1. Edwards, C.; Mark, B. Ann. Med. 2005, 37, 314.
2. Meier, J. J.; Nauck, M. A. Horm. Metab. Res. 2004, 36,
859.
3. Holst, J. J.; Gromada, J. Am. J. Physiol. Endocrinol.
Metab. 2004, 47, 357.
4. Fehmann, H. C.; Habener, J. F. Endocrinology 1992, 130,
2890.
5. Heller, R. S.; Kieffer, T. J.; Habener, J. F. Diabetes 1997,
46, 785.
rats with a high clearance rate and low oral bioavailabil-
ity. We reasoned that the low plasma stability was partly
due to the electrophilicity of the carbonyl groups which
made the maleimide susceptible to nucleophilic attack.
In an attempt to make more stable DPPIV inhibitors,
7 was reacted with either N-methyl amine to convert
the A ring to the ring opened diamide 19 or reacted with
N,N0-dimethylhydrazine to prepare the corresponding
pyridazine dione 20 (Scheme 2).
6. Imeryuz, N.; Yegen, B. C.; Bozkurt, A.; Coskun, T.;
Villanueva-Penacarrillo, M. L.; Ulusoy, N. B. Am. J.
Physiol. 1997, 273, G920.
7. Egan, J. M.; Bulotta, A.; Hui, H.; Perfetti, R. Diabetes
Metab. Res. Rev. 2003, 19, 115.
8. Orville, G.; Kolterman, J. B.; Buse, J. B.; Fineman, M. S.;
Eling, G.; Sonja, H.; Bicsak, T. A.; Taylor, K.; Kim, D.;
Aisporna, M.; Wang, Y.; Baron, A. D. J. Clin. Endocrinol.
Metab. 2003, 88, 3082.
9. Weber, A. J. Med. Chem 2004, 47, 4135.
10. Augustyns, K.; Van der Veken, P.; Haemers, A. Expert
Opin. Ther. Patents 2005, 15, 1387.
11. Szczepankiewicz, B. G.; Kurukulasuriya, R. Curr. Top.
Med. Chem. 2006, in press.
12. Gwaltney, S. L.; Aertgeerts, K.; Feng, J.; Kaldor, S. W.;
Kassel, D. B.; Manuel, M.; Navre, M.; Prasad, S. G.; Shi,
L.; Skene, R. J.; Stafford, J. A.; Wallace, M.; Xu, R.; Ye,
S.; Zhang, Z. Abstracts of Papers, 231st Meeting of the
American Chemical Society, Atlanta, GA, 2006; MEDI-
018.
13. Kanstrup, A. B.; Christain, L. B.; Lundbeck, J. M.; Sams,
C. K.; Kristiansen, M.; WO Patent 0202560, 2001.
14. Longenecker, K. L.; Stewart, K. D.; Madar, D. J.; Jakob,
C. G.; Fry, E. H.; Wilk, S.; Lin, C. W.; Ballaron, S. J.;
Stashko, M. A.; Lubben, T. H.; Yong, H.; Pireh, D.; Pei,
Z.; Basha, F.; Wiederman, P. E.; von Geldern, T. W.;
Trevillyan, J. M.; Stoll, V. S. Biochemistry 2006, 45, 7474.
15. Szczepankiewicz, B. G.; Rohde, J. J.; Kurukulasuriya, R.
Org. Lett. 2005, 7, 1833.
Compounds 7, 19, and 20 were tested against human
and rat DPPIV enzyme in the presence of 2% and 18%
rat plasma to study the effects of plasma stability on
DPPIV inhibition (Table 2). Xanthine 6, maleimide 7,
and pyridazinedione 20 did not show species specificity
against human and rat DPPIV enzymes in the absence
of plasma. Xanthine 6 is stable in rat plasma with a mere
2-fold shift in potency in the presence of 18% rat plasma
(r-DPPIV Ki = 3–7 nM). Confirming the PK and plasma
instability result, a significant shift in potency was ob-
served for 7 against DPPIV in the absence of plasma
(r-DPPIV Ki = 2 nM) compared to 18% rat plasma (r-
DPPIV Ki = 600 nM). The ring opened analog 19 was
weak against h-DPPIV. The ring expanded product 20
was 5-fold less potent than 7 (h-DPPIV Ki = 11 nM).
However, the compound was stable in rat plasma with-
out a significant shift in potency in the presence of plas-
ma (r-DPPIV Ki = 17–24 nM in 18% plasma).
Human peptidases including DPP7, DPP8, DPP9, and
POP are structurally or functionally related to DPPIV
and most importantly inhibition of DPP8 and/or
DPP9 is associated with significant toxicity.17 The com-
pounds were screened and found to be inactive against
these isozymes (Table 3).
16. Engel, M.; Hoffman, T.; Wagner, L.; Wermann, M.;
Heiser, U.; Kiefersauer, R.; Huber, R.; Bode, W.;
Demuth, H. U.; Brandstetter, H. PANS 2003, 100, 5063.
17. Lankas, G.; Leiting, B.; Roy, R. S. Diabetes 2004, 53,
A2-OR.
In summary, we have discovered novel, potent, and
selective xanthine mimetics based on 5,5 and 5,6 ring