10.1002/anie.201713357
Angewandte Chemie International Edition
COMMUNICATION
In contrast, all oxazole derivatives 6a-6c exhibited blue-shifted
K.S. sincerely thanks IUSSTF and SERB for postdoctoral
fellowship (award no. 2016/66-K.S.).
mechanochromic
behaviors
(Figure
2).
The
mechanofluorochromic behaviors of these compounds were
further investigated in details. Grinding of the pristine powder 6a-
6c induced a substantial blue-shift with emission color change
from yellow (λem = 504-571 nm) to blue (λem = 447-478 nm)
(approximately 105, 50, and 93 nm, respectively) (Figure 2;
Figure S3 and S6). These results reflect that the exchange of
the aldehyde and oxazole moieties does make a counterpoint in
chromism trends. The emission of ground powder 6a-6c is
similar to that in toluene. Thus, the fluorescence blue-shift after
grinding the powder can be ascribed to weakened intermolecular
π-π interactions. Significantly, ground powder 6b and 6c
displayed deep-blue emission with CIE1931 of (0.15, 0.05) and
(0.17, 0.06), which is very close to EBU coordinates of (0.15,
0.06) (Figure 2, Figure S4 and Table S2). These results indicate
their promising applications in highly efficient standard-blue
luminescent devices.[11]
To gain an in-depth understanding of the origin of the
mechanochromic properties of 5a and 6a powder, we studied
the phase characteristics of 5a and 6a powder by differential
scanning calorimetry (DSC) and powder X-ray diffraction(PXRD)
analysis. DSC experiment for the different states of 5a displayed
the ground samples present a slight exothermal peak, indicating
a transition between the metastable state and the stable state
(Figure S7). The PXRD patterns of the unground powder of 5a
showed sharp and intense reflection peaks, but these sharp
peaks disappeared after grinding treatment. These experiments
demonstrate a morphological transition from the crystalline to
amorphous phases. The DSC and PXRD experiments on 6a
powder exhibited no obvious exothermal peak and diffraction
peaks, suggesting that solid 6a stays in an amorphous state and
lacks close molecular packing (Figure S8).
Keywords: five-membered heterocyclic carbonyl compounds • transient
ligand • C-H activation • palladium-catalysis• mechanofluorochromic materials
[1]
[2]
a) H. S. Bhattia, S. Seshadri, Dyes and Pigments 2004, 62, 83-92; b) K.
Ueda, K. Amaike, R. M. Maceiczyk, K. Itami, J. Yamaguchi, J. Am.
Chem. Soc. 2014, 136, 13226-13232.
a) S. Frank, U. Grether, H. Waldmann, Chem. Eur. J. 2003, 9, 3270-
3281; b) G. Sathishkannan, K. Srinivasan, Chem. Commun., 2014, 50,
4062-4064; c) G. Zhang, F. Rominger, M. Mastalerz, Chem. Eur. J.
2016, 22, 3084-3093.
[3]
a) S. Yanagisawa, K. Ueda, H. Sekizawa, K. Itami, J. Am. Chem. Soc.
2009, 131, 14622-14623; b) K. Ueda, S. Yanagisawa, J. Yamaguchi, K.
Itami, Angew. Chem., Int. Ed. 2010, 49, 8946-8949; Angew. Chem.
2010, 122, 9130-9133.
[4] a) T. Okazawa, T. Satoh, M. Miura, M. Nomura, J. Am. Chem. Soc. 2002,
124, 5286-5287; b) S. Kirchberg, S. Tani, K. Ueda, J. Yamaguchi, A.
Studer, K. Itami, Angew. Chem., Int. Ed. 2011, 50, 2387-2391; Angew.
Chem. 2011,123, 2435-2439.
[5] B. Liꢀgault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, J. Org. Chem.
2009, 74, 1826-1834.
[6]
a) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017,
117, 8754-8786; b) Y. Qin, L. H. Zhu, S. Z. Luo, Chem. Rev. 2017, 117,
9433-9520.
[7]
a) F. Mo, G. Dong, Science 2014, 345, 68-72; b) F. L. Zhang, K. Hong,
T. J. Li, H. Park, J. Q. Yu, Science 2016, 351, 252-256; c) K. Yang, Q.
Li, Y. B. Liu, G. G. Li, H. B. Ge, J. Am. Chem. Soc. 2016, 138, 12775-
12778; d) Y. Xu, M. C. Young, C. P. Wang, D. M. Magness, G. B. Dong,
Angew. Chem., Int. Ed. 2016, 55, 9084-9087; Angew. Chem. 2016, 128,
9230-9233; e) Y. B. Liu, H. B. Ge, Nat. Chem. 2016, 9, 26-32; f) Y. W.
Wu, Y. Q. Chen, T. Liu, M. D. Eastgate, J. Q. Yu, J. Am. Chem. Soc.
2016, 138, 14554-14557; g) X. H. Liu, H. Park, J. H. Hu, Y.Hu, Q. L.
Zhang, B. L. Wang, B. Sun, K. S. Yeung, F. L. Zhang, J. Q. Yu, J. Am.
Chem. Soc. 2017, 139, 888-896; h) A. Yada, W. Q. Liao, Y. Sato, M.
Murakami, Angew. Chem., Int. Ed. 2017, 56, 1073-1076; Angew. Chem.
2017, 129, 1093-1096; i) X. Zhang, H. Zheng, J. Li, F. Xu, J. Zhao, H.
Yan, J. Am. Chem. Soc. 2017, 139, 14511-14517.
In summary, a highly site-selective arylation reaction of five-
membered heterocyclic carbonyl compounds with aryl iodides
has been developed for the first time through a palladium-
catalyzed CH bond functionalization process with 3-amino-3-
methylbutanoic acid as a transient ligand. This approach
[8]
[9]
a) Y. Sagara, T. Kato, Nat. Chem. 2009, 1, 605-610; b) S. Varghese, S.
Das, J. Phys. Chem. Lett. 2011, 2, 863-873; c) Z. Chi, X. Zhang, B. Xu,
X. Ma, C. Zhou, Y. Zhang, S. Liu, J. Xu, Chem. Soc. Rev. 2012, 41,
3878-3896; d) Y. Sagara, S. Yamane, M. Mitani, C. Weder, T. Kato,
Adv. Mater. 2016, 28, 1073-1095.
provides
a
straightforward access to 3-arylthiophene-2-
carbaldehydes and 3-arylthiophene-2-oxazoles, which opens up
a new avenue for rapid construction of mechanochromic
materials. As results, a novel strategy for the blue- and red-shift
mechanochromic luminogens has been developed based on
TPA-containing β-aryl-substituted five-membered heterocyclic
carbonyl compounds. The TPA-containing 3-arylthiophene-2-
carbaldehydes displayed remarkable red-shift of emission.
Interestingly, facile conversion of the aldehyde group to oxazole
resulted in the blue-shifted luminogens. This represents the first
example of achieving two different chromism trends on a
common structural frame via a ready functional group change,
and thus will inspire the development of novel applicable
mechanochromic materials with rich stimuli responsive behavior.
a) T. Mutai, H. Satou, K. Araki, Nat. Mater. 2005, 4, 685-687; b) D. Zhao,
G. Li, D. Wu, X. Qin, P. Neuhaus, Y. Cheng, S.Yang, Z. Lu, X. Pu, C.
Long, J. You, Angew. Chem. Int. Ed. 2013, 52, 13676-13680; Angew.
Chem. 2013, 125, 13921-13925; c) G. Li, F. Song, D. Wu, J. Lan, X. Liu,
J. Wu, S. Yang, D. Xiao, J. You, Adv. Funct. Mater. 2014, 24, 747-753;
d) P. Galer, R. C. Korošec, M. Vidmar, B. Šket, J. Am. Chem. Soc.
2014, 136, 7383-7394; e) Z. Mao, Z. Yang, Y. Mu, Y. Zhang, Y.-F.
Wang, Z. Chi, C.-C. Lo, S. Liu, A. Lien, J. Xu, Angew. Chem. Int. Ed.
2015, 54, 6270-6273; Angew. Chem. 2015, 127, 6368-6371; f) J. Wu, Y.
Y. Cheng, J. B. Lan, D. Wu, S. Y. Qian, L. P. Yan, Z. He, X. Y. Li, K.
Wang, B. Zou, J. S. You, J. Am. Chem. Soc. 2016, 138, 12803-12812;
g) L. Liu, X. Wang, N. Wang, T. Peng, S. Wang, Angew. Chem., Int. Ed.
2017, 56, 9160-9164; Angew. Chem. 2017, 129, 9288-9292.
[10] M. Zhu, C. Yang, Chem. Soc. Rev. 2013, 42, 4963-4976.
[11]
B. Li, G. Tang, L. Zhou, D. Wu, J. Lan, L. Zhou, Z. Lu, J. You, Adv.
Funct. Mater. 2017, 27, 1605245-1605253.
Acknowledgements
We gratefully acknowledge NSF (CHE-1350541) and Indiana
University Purdue University Indianapolis for financial support.
This article is protected by copyright. All rights reserved.