2998
A. Yılmaz et al. / Polyhedron 29 (2010) 2991–2998
[3] L. Musılova, K. Kuca, Y.S. Jung, D. Jun, Clin. Toxicol. 47 (2009) 545.
[4] A. Mokhir, R. Krämer, Y.Z. Voloshin, O.A. Varzatskii, Bioorg. Med. Chem. Lett. 14
(2004) 2927.
P. aeruginosa in 128, 256, 64, 32, 64, 64, 128 and 128, 128, 64, 32,
128, 128, 128 g/ml concentrations respectively (Table 4). A com-
parative study of MIC values of the ligand and its Ni(II) complex
indicates that the free ligand has a better activity than has the me-
tal complex against E. coli and LH2 exhibited antibacterial activity
l
[5] B.G. Malmstrom, Acc. Chem. Res. 26 (1993) 332.
[6] L.O. Filippov, R. Joussemet, R. Houot, Miner. Eng. 13 (2000) 37.
[7] A.V. Makarycheva-Mikhailova, P.V. Gushchin, M.N. Kopylovich, I.N.
Ganebnykh, V.N. Charushin, M. Haukka, A.J.L. Pombeiro, V.Yu. Kukushkin,
Inorg. Chem. Commun. 9 (2006) 869.
in 64
Ni(II) complex was observed in 128
However, Ni(II) complex shows high bactericidal activity against S.
mutans (MIC = 128 g/ml) as compared to free ligand. Both of the
l
g/ml concentration, whereas the antibacterial activity of
_
[8] F. Yuksel, A.G. Gürek, M. Durmusß, I. Gürol, V. Ahsen, E. Jeanneau, D. Luneau,
lg/ml MIC value against E. coli.
Inorg. Chim. Acta 361 (2008) 2225.
[9] D. Mandal, B.D. Gupta, Organometallics 25 (2006) 3305.
[10] M. Bhuyan, M. Laskar, B.D. Gupta, Organometallics 27 (2008) 594.
[11] V. Vijaikanth, B.D. Gupta, D. Mandal, S. Shekhar, Organometallics 24 (2005)
4454.
[12] O. Pantani, E. Anxolabéhére-Mallart, A. Aukauloo, P. Millet, Electrochem.
Commun. 9 (2007) 54.
[13] S. Karaböcek, S. Nohut, S. Güner, Anal. Chim. Acta 408 (2000) 163.
[14] H. Arslan, N. Özpozan, N. Tarkan, Thermochim. Acta 383 (2002) 69.
[15] B. Pihlar, P. Valenta, H.W. Nurnberg, Z. Fresenius, Anal. Chem. 307 (1981) 337.
[16] J.R. Donat, K.W. Bruland, Anal. Chem. 60 (1988) 240.
[17] J. Golimowski, A. Tykarska, J. Fresenius, Anal. Chem. 349 (1994) 620.
[18] W.R. Jin, V.D. Nguyen, P. Valenta, H.W. Nurnberg, Anal. Lett. 30 (1997) 1235.
[19] M.P. Hogan, K.A. Abboud, K.H. Dahmen, Chem. Mater. 10 (1998) 2525.
[20] H.J. Schneider, Angew. Chem., Int. Ed. Engl. 30 (1991) 1417.
[21] E. Mishani, C.S. Dence, T.J. McCarthy, M.J. Welch, Tetrahedron Lett. 37 (1996)
319.
l
compounds have same MIC values against test microorganisms
for S. aureus, E. faecalis, L. acidophilus, and P. aeruginosa. The present
investigations of antimicrobial screening data revealed that the
newly synthesized compounds exhibited mild activity compared
to that of the control drugs. Moreover, we will synthesize novel
piperazine moiety compounds, and try our best to discover their
structure–activity relationships.
4. Conclusions
We have described the preparation, characterization and bio-
logical activities of a novel vic-dioxime ligand and its Ni(II) metal
complex which were substituted peripherally with bioactive piper-
azine moiety. The spectroscopic analysis confirmed the composi-
tion and the structure of the newly obtained compounds. It was
concluded from TG/DTG studies that the thermal stability of the
Ni(II) complex is higher than that of the ligand since the free
@C@NOH groups in the ligand participate in some internal redox
decomposition processes. The antibacterial data given for the com-
pounds presented in this paper allowed us to state that the vic-
dioxime ligand generally has a better activity than the Ni(II) com-
plex and all the compounds have mild antibacterial activity against
both Gram negative and Gram positive bacterial species.
[22] P. Chaudhary, R. Kumar, A.K. Verma, D. Singh, V. Yadav, A.K. Chhillar, G.L.
Sharma, R. Chandra, Bioorg. Med. Chem. 14 (2006) 1819.
[23] Rigaku/MSC, Inc., 9009 New Trails Drive, The Woodlands, TX 77381.
[24] G.M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.
[25] J.V. Burakevich, A.M. Lore, G.P. Volpp, J. Org. Chem. 36 (1971) 1.
[26] D. Cremer, J.A. Pople, J. Am. Chem. Soc. 97 (1975) 1354.
[27] A. Parkin, Acta Crystallogr. B60 (2004) 219.
[28] Y. Köysal, S. Isik, N. Sarikavakli, F. Erduran, Acta Crystallogr. E60 (2004) 515.
[29] A.W. Marsman, E.D. Leussing, J.W. Zwikker, L.W. Jenneskens, Chem. Mater. 11
(1999) 1484.
[30] V. Bertolasi, G. Gilli, A.C. Veronese, Acta Crystallogr. B38 (1982) 502.
[31] E. Alcalde, N. Mesquida, C. Alvarez-Rúa, R. Cuberes, J. Frigola, S. García-Granda,
Molecules 13 (2008) 301.
[32] M. Kurtog˘lu, E. Ispir, N. Kurtog˘lu, S. Serin, Dyes Pigments 77 (2008) 75.
[33] A. Coßskun, F. Yılmaz, E.G. Akgemici, J. Inc. Pheo. Chem. 60 (2008) 393.
[34] P. Deveci, E. Özcan, B. Taner, O. Arslan, J. Coord. Chem. 61 (2008) 857.
[35] B.D. Gupta, R. Yamuna, D. Mandal, Organometallics 25 (2006) 706.
[36] M.L. Kantouri, A. Hatzidimitriou, M. Udin, Polyhedron 18 (1999) 3441.
[37] Cs. Varhelyi Jr., G. Pokol, Á. Gömöry, A. Ganescu, P. Sohar, G. Liptay, Cs.
Varhelyi, J. Therm. Anal. Calorim. 83 (2006) 701.
References
[1] P. Rodríguez, E. Herrero, J. Solla-Gullón, J.M. Feliu, A. Aldaz, J. Solid State
Electrochem. 12 (2008) 575.
[38] D. Atılla, S. Asma, A.G. Gurek, J. Coord. Chem. 18 (2009) 3050.
[2] L. Husáková, A. Bobrowski, J. Šrámková, A. Krôlicka, K. Vytras, Talanta 66
(2005) 999.