5 A. Chilkoti, M. R. Dreher, D. E. Meyer and D. Raucher, Adv.
Drug Delivery Rev., 2002, 54, 613–630.
6 E. S. Gil and S. M. Hudson, Prog. Polym. Sci., 2004, 29,
1173–1222.
7 A. S. Hoffman and P. S. Stayton, Prog. Polym. Sci., 2007, 32,
922–932.
8 Q. P. Hou and Y. H. Bae, Adv. Drug Delivery Rev., 1999, 35,
271–287.
9 B. Jeong, S. W. Kim and Y. H. Bae, Adv. Drug Delivery Rev., 2002,
54, 37–51.
10 E. Kokufuta, Adv. Polym. Sci., 1993, 110, 157–177.
11 J. D. Kretlow, L. Klouda and A. G. Mikos, Adv. Drug Delivery
Rev., 2007, 59, 263–273.
12 X. J. Loh, W. C. D. Cheong, J. Li and Y. Ito, Soft Matter, 2009, 5,
2937–2946.
13 X. J. Loh, J. S. Gong, M. Sakuragi, T. Kitajima, M. Z. Liu, J. Li
and Y. Ito, Macromol. Biosci., 2009, 9, 1069–1079.
14 X. J. Loh, Y. L. Wu, W. T. J. Seow, M. N. I. Norimzan,
Z. X. Zhang, F. Xu, E. T. Kang, K. G. Neoh and J. Li, Polymer,
2008, 49, 5084–5094.
Fig. 3 Transmittance response (recorded at 600 nm) of an aqueous
solution of P1 (0.2 mM) induced by a series of host–guest complexations
and a change in temperature.
15 X. J. Loh, Z. X. Zhang, Y. L. Wu, T. S. Lee and J. Li,
Macromolecules, 2009, 42, 194–202.
16 H. G. Schild, Prog. Polym. Sci., 1992, 17, 163–249.
17 C. Boyer, V. Bulmus, J. Q. Liu, T. P. Davis, M. H. Stenzel and
C. Barner-Kowollik, J. Am. Chem. Soc., 2007, 129, 7145–7154.
18 S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka and
T. Okano, J. Controlled Release, 1997, 48, 157–164.
19 A. S. Hoffman, P. S. Stayton, V. Bulmus, G. H. Chen, J. P. Chen,
C. Cheung, A. Chilkoti, Z. L. Ding, L. C. Dong, R. Fong,
C. A. Lackey, C. J. Long, M. Miura, J. E. Morris, N.
Murthy, Y. Nabeshima, T. G. Park, O. W. Press, T. Shimoboji,
S. Shoemaker, H. J. Yang, N. Monji, R. C. Nowinski,
C. A. Cole, J. H. Priest, J. M. Harris, K. Nakamae, T.
Nishino and T. Miyata, J. Biomed. Mater. Res., 2000, 52,
577–586.
of PNIPAM from the cavity of CB[8] and rendering the
PNIPAM water insoluble again. Therefore, the solution turns
turbid as the temperature of 26 1C is above the LCST of the
uncomplexed P1. Temperature-dependent phase transition
profiles before and after addition of Ad confirmed this
(Fig. S6 in ESIz). A final cooling step to 15 1C, well below
the LCST of the system, then returned the mixture of unbound
P1 and small molecule CB[8] complexes to an optically
transparent, fully dissolved hydrophilic state again. These
experiments illustrate that phase transitions of thermoresponsive
polymers in solution can be achieved at a constant temperature
via the on-off switching of host–guest complexation at the
polymer terminus.
20 X. Yin, A. S. Hoffman and P. S. Stayton, Biomacromolecules, 2006,
7, 1381–1385.
21 H. Ringsdorf, J. Venzmer and F. M. Winnik, Macromolecules,
1991, 24, 1678–1686.
22 M. Chiper, D. Fournier, R. Hoogenboom and U. S. Schubert,
Macromol. Rapid Commun., 2008, 29, 1640–1647.
23 H. Ritter, O. Sadowski and E. Tepper, Angew. Chem., Int. Ed.,
2003, 42, 3171–3173.
24 Q. Duan, Y. Miura, A. Narumi, X. Shen, S.-I. Sato, T. Satoh and
T. Kakuchi, J. Polym. Sci., Part A: Polym. Chem., 2006, 44,
1117–1124.
25 Z. X. Zhang, X. Liu, F. J. Xu, X. J. Loh, E. T. Kang, K. G. Neoh
and J. Li, Macromolecules, 2008, 41, 5967–5970.
26 H.-J. Kim, J. Heo, W. S. Jeon, E. Lee, J. Kim, S. Sakamoto,
K. Yamaguchi and K. Kim, Angew. Chem., Int. Ed., 2001, 40,
1526–1529.
In conclusion, a facile method to control the LCST of
functional PNIPAMs in water is described. Through preparation
of a CB[8] ternary complex at the chain end of a functional
PNIPAM, the hydrophobicity of the polymer terminus can be
switched from hydrophobic to hydrophilic, resulting in a
significant shift in the LCST of the overall polymer. By adding
a competitive guest to the system, which unlocks the hydro-
philic M2V C CB[8] from the PNIPAM chain end, the LCST
of the solution can be returned back to the original value.
From a practical point of view, our supramolecular approach
allows for simple, instantaneous control of the thermoresponsive
properties of PNIPAM. As the phase change can furthermore
be induced at a constant temperature, this approach may
particularly aid the design of responsive systems, in which
an external temperature adjustment is not feasible, such as in
some biosensing and drug delivery applications.
27 M. E. Bush, N. D. Bouley and A. R. Urbach, J. Am. Chem. Soc.,
2005, 127, 14511–14517.
28 U. Rauwald, F. Biedermann, S. Deroo, C. V. Robinson and
O. A. Scherman, J. Phys. Chem. B, 2010, 114, 8606–8615.
29 F. Biedermann, U. Rauwald, M. Cziferszky, K. A. Williams,
L. D. Gann, B. Y. Guo, A. R. Urbach, C. W. Bielawski and
O. A. Scherman, Chem.–Eur. J., 2010, 16, 13716–13722.
30 U. Rauwald and O. A. Scherman, Angew. Chem., Int. Ed., 2008,
47, 3950–3953.
31 S. Deroo, U. Rauwald, C. V. Robinson and O. A. Scherman,
Chem. Commun., 2009, 644–646.
Notes and references
32 J. M. Zayed, F. Biedermann, U. Rauwald and O. A. Scherman,
Polym. Chem., 2010, 1, 1434–1436.
33 E. A. Appel, F. Biedermann, U. Rauwald, S. T. Jones, J. M. Zayed
and O. A. Scherman, J. Am. Chem. Soc., 2010, 132,
14251–14260.
1 G. H. Chen and A. S. Hoffman, Nature, 1995, 373, 49–52.
2 P. S. Stayton, T. Shimoboji, C. Long, A. Chilkoti, G. H. Chen,
J. M. Harris and A. S. Hoffman, Nature, 1995, 378, 472–474.
3 J. del Barrio, L. Oriol, C. Sanchez, J. L. Serrano, A. Di Cicco,
P. Keller and M. H. Li, J. Am. Chem. Soc., 2010, 132, 3762–3769.
4 L. E. Bromberg and E. S. Ron, Adv. Drug Delivery Rev., 1998, 31,
197–221.
34 F. Biedermann, U. Rauwald, J. M. Zayed and O. A. Scherman,
Chem. Sci., 2011, 2, 279–286.
c
6002 Chem. Commun., 2011, 47, 6000–6002
This journal is The Royal Society of Chemistry 2011