60
N. Drinkwater and others
14 Gearhart, D. A., Neafsey, E. J. and Collins, M. A. (2002) Phenylethanolamine
N-methyltransferase has β-carboline 2N-methyltransferase activity: hypothetical
relevance to Parkinson’s disease. Neurochem. Int. 40, 611–620
15 Kennedy, B. P., Bottiglieri, T., Arning, E., Ziegler, M. G., Hansen, L. A. and Masliah, E.
(2004) Elevated S-adenosylhomocysteine in Alzheimer brain: influence on
methyltransferases and cognitive function. J. Neural Transm. 111, 547–567
16 Martin, J. L., Begun, J., McLeish, M. J., Caine, J. M. and Grunewald, G. L. (2001) Getting
the adrenaline going: crystal structure of the adrenaline-synthesizing enzyme PNMT.
Structure 9, 977–985
17 Drinkwater, N., Gee, C. L., Puri, M., Criscione, K. R., McLeish, M. J., Grunewald, G. L.
and Martin, J. L. (2009) Molecular recognition of physiological substrate noradrenaline
by the adrenaline-synthesizing enzyme PNMT and factors influencing its
methyltransferase activity. Biochem. J. 422, 463–471
18 Gee, C. L., Tyndall, J. D., Grunewald, G. L., Wu, Q., McLeish, M. J. and Martin, J. L.
(2005) Mode of binding of methyl acceptor substrates to the adrenaline-synthesizing
enzyme phenylethanolamine N-methyltransferase: implications for catalysis.
Biochemistry 44, 16875–16885
19 McPhillips, T. M., McPhillips, S. E., Chiu, H. J., Cohen, A. E., Deacon, A. M., Ellis, P. J.,
Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P. et al. (2002) Blu-Ice and the
distributed control system: software for data acquisition and instrument control at
macromolecular crystallography beamlines. J. Synchrotron Radiat. 9, 401–406
20 Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in
oscillation mode. Methods Enzymol. 276, p.307–326
21 Emsley, P. and Cowtan, K. (2004) COOT: model-building tools for molecular graphics.
Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132
22 Schuettelkopf, A. W. and van Aalten, D. M. F. (2004) PRODRG – a tool for high-
throughput crystallography of protein–ligand complexes. Acta Crystallogr. Sect. D Biol.
Crystallogr. 60, 1355–1363
internal control for the screen. Overall, we structurally and
thermodynamically characterized the binding of 17 small mol-
ecules to hPNMT, including the first such characterization of the
benzimidazole class of compounds bound to the noradrenaline-
binding site.
AUTHOR CONTRIBUTION
Nyssa Drinkwater and Jennifer Martin conceived the idea. Nyssa Drinkwater performed the
majority of the research and Jennifer Martin co-ordinated the study. Hoan Vu and Sally-
Ann Poulsen designed and performed the MS experiments. Kimberly Lovell, Thomas
Prisinzano, Kevin Criscione and Gary Grunewald designed and supervized compound
synthesis and contributed to compound characterization. Michael McLeish provided the
plasmid for the enzyme and contributed to data interpretation. Brett Collins assisted in
measurement and analysis of ITC data. Nyssa Drinkwater prepared the first draft of the
paper. All authors contributed to discussions on the study and provided intellectual input
to the manuscript.
ACKNOWLEDGEMENTS
We are grateful for access to the UQ ROCX Diffraction Facility and thank Karl Byriel and
Gordon King for their assistance. We thank staff at the MX1 beamline of the Australian
Synchrotron for their invaluable advice. The MS data could not have been measured
without access to the Eskitis Institute FTMS facility. We thank Dr F. Anthony Romero for
helpful preliminary discussions and Duncan McRee for advice and information regarding
the ActiveSight library.
23 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd,
J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W. et al. (2010) PHENIX: a
comprehensive Python-based system for macromolecular structure solution. Acta
Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221
FUNDING
24 Grunewald, G. L., Romero, F. A., Chieu, A. D., Fincham, K. J., Bhat, S. R. and Criscione,
K. R. (2005) Exploring the active site of phenylethanolamine N-methyltransferase:
3-alkyl-7-substituted-1,2,3,4-tetrahydroisoquinoline inhibitors. Bioorg. Med. Chem. 13,
1261–1273
25 Morningstar, M. L., Roth, T., Farnsworth, D. W., Smith, M. K., Watson, K., Buckheit, R. W.,
Das, K., Zhang, W. Y., Arnold, E., Julias, J. G. et al. (2007) Synthesis, biological activity,
and crystal structure of potent nonnucleoside inhibitors of HIV-1 reverse transcriptase
that retain activity against mutant forms of the enzyme. J. Med. Chem. 50, 4003–4015
26 Galan, A. A., Chen, J., Du, H., Forsyth, T., Huynh, T. P., Johnson, H. W. B., Kearney, P.,
Leahy, J. W., Lee, M. S., Mann, G. et al. (2008) Preparation of 1H-imidazole-4,5-
dicarboxamides as JAK-2 modulators. European Patent Foundation no.
WO2008042282-A2
27 Parmee, E. R., Kim, R. M., Rouse, E. A., Schmidt, D. R., Sinz, C. J. and Chang, J. (2005)
Preparation of cyclic guanidines as glucagon receptor antagonists for the treatment of
type 2 diabetes. PCT Int. Appl., no. WO 2005065680-A1 20050721
28 Gee, C. L., Drinkwater, N., Tyndall, J. D. A., Grunewald, G. L., Wu, Q., McLeish, M. J. and
Martin, J. L. (2007) Enzyme adaptation to inhibitor binding: a cryptic binding site in
phenylethanolamine N-methyltransferase. J. Med. Chem. 50, 4845–4853
29 McMillan, F. M., Archbold, J., McLeish, M. J., Caine, J. M., Criscione, K. R., Grunewald,
G. L. and Martin, J. L. (2004) Molecular recognition of sub-micromolar inhibitors by the
epinephrine-synthesizing enzyme phenylethanolamine N-methyltransferase. J. Med.
Chem. 47, 37–44
This work was supported by an University of Queensland Graduate School Research
Travel Grant and an Australian Postgraduate Award (to N.D.); an Australian Research
Council Discovery Project award [grant number DP0664564 (to J.L.M.)]; an Australian
National Health and Medical Research Council Biomedical RD Wright Career Development
Award (to B.M.C.) and Senior Research Fellowship [grant number 455829 (to J.L.M.)]; an
Australian Research Council Linkage Equipment and Infrastructure Award [grant numbers
LE0668382 (to J.L.M.), LE237908 (to S.-A.P.)]; and by the National Institutes of Health
[grant number NIH HL034193 (to G.L.G.)].
REFERENCES
1
2
3
4
5
6
7
Hajduk, P. J. and Greer, J. (2007) A decade of fragment-based drug design: strategic
advances and lessons learned. Nat. Rev. Drug Discov. 6, 211–219
Murray, C. W. and Rees, D. C. (2009) The rise of fragment-based drug discovery. Nat.
Chem. 1, 187–192
Congreve, M., Carr, R., Murray, C. and Jhoti, H. (2003) A rule of three for fragment-based
lead discovery? Drug Discov. Today 8, 876–877
Rees, D. C., Congreve, M., Murray, C. W. and Carr, R. (2004) Fragment-based lead
discovery. Nat. Rev. Drug Discov. 3, 660–672
Erlanson, D. A. (2006) Fragment-based lead discovery: a chemical update. Curr. Opin.
Biotech. 17, 643–652
Neumann, T., Junker, H. D., Schmidt, K. and Sekul, R. (2007) SPR-based fragment
screening: advantages and applications. Curr. Top. Med. Chem. 7, 1630–1642
Ciulli, A., Williams, G., Smith, A. G., Blundell, T. L. and Abell, C. (2006) Probing hot
spots at protein-ligand-binding sites: a fragment-based approach using biophysical
methods. J. Med. Chem. 49, 4992–5000
30 Wu, Q., Gee, C. L., Lin, F., Tyndall, J. D., Martin, J. L., Grunewald, G. L. and McLeish,
M. J. (2005) Structural, mutagenic, and kinetic analysis of the binding of substrates and
inhibitors of human phenylethanolamine N-methyltransferase. J. Med. Chem. 48,
7243–7252
31 Turnbull, W. B. and Daranas, A. H. (2003) On the value of c: can low affinity systems be
studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866
32 Mandel, L. R., Porter, C. C., Kuehl, F. A., Jensen, N. P., Schmitt, S. M., Windholz, T. B.,
Beattie, T. R., Carty, J. A., Christen, B. G. and Shen, T. Y. (1970) Inhibition of adrenal
phenethanolamine N-methyltransferase by substituted benzimidazoles. J. Med. Chem.
13, 1043–1047
8
9
Orita, M., Warizaya, M., Amano, Y., Ohno, K. and Niimi, T. (2009) Advances in
fragment-based drug discovery platforms. Exp. Opin. Drug Discov. 4, 1125–1144
Hofstadler, S. A. and Sannes-Lowery, K. A. (2006) Applications of ESI-MS in drug
discovery: interrogation of noncovalent complexes. Nat. Rev. Drug Discov. 5, 585–595
10 Schulz, M. N. and Hubbard, R. E. (2009) Recent progress in fragment-based lead
discovery. Curr. Opin. Pharmacol. 9, 615–621
33 Antonysamy, S. S., Aubol, B., Blaney, J., Browner, M. F., Giannetti, A. M., Harris, S. F.,
Hebert, N., Hendle, J., Hopkins, S., Jefferson, E. et al. (2008) Fragment-based discovery
of hepatitis C virus NS5b RNA polymerase inhibitors. Bioorg. Med. Chem. Lett. 18,
2990–2995
34 Bosch, J., Robien, M. A., Mehlin, C., Boni, E., Riechers, A., Buckner, F. S., Van Voorhis,
W. C., Myler, P. J., Worthey, E. A., DeTitta, G. et al. (2006) Using fragment cocktail
crystallography to assist inhibitor design of Trypanosoma brucei nucleoside
2-deoxyribosyltransferase. J. Med. Chem. 49, 5939–5946
11 Fuller, R. W. (1982) Pharmacology of brain epinephrine neurons. Ann. Rev. Pharmacol.
Toxicol. 22, 31–55
12 Crowley, W. R., Terry, L. C. and Johnson, M. D. (1982) Evidence for the involvement of
central epinephrine systems in the regulation of luteinizing-hormone, prolactin, and
growth-hormone release in female rats. Endocrinology 110, 1102–1107
13 Mefford, I. N., Lister, R. G., Ota, M. and Linnoila, M. (1990) Antagonism of ethanol
intoxication in rats by inhibitors of phenylethanolamine N-methyltransferase. Alcohol
Clin. Exper. Res. 14, 53–57
ꢀ
c
ꢀ
c
The Authors Journal compilation 2010 Biochemical Society