C O M M U N I C A T I O N S
Scheme 3
Acknowledgment. We thank the NIH NIGMS (GM-55382) for
support of this work.
Supporting Information Available: Experimental procedures,
computational details, characterization of complexes, and crystal-
lographic data (CIF) for 1 and 3. This material is available free of charge
provided evidence against the involvement of aryl radicals in
Ullmann-type reactions.10 This work provided some evidence for
arylcopper(III) intermediates, and arylcopper(III) species have now
been isolated.15 However, the barriers predicted from Marcus theory
using energies of reactants and products calculated by DFT led to
the conclusion that the copper-catalyzed coupling of iodobenzene
with methylamine as a representative alkylamine occurs by a radical
path22 and that the Cu(III) species [LCu(III)(NHMe)(Ph)(I)] lies
at too high an energy to be an intermediate. Our results from the
reactions of isolated amidocopper(I) intermediates with radical probe
9 suggest that the Cu(I)-catalyzed Ullmann reactions of diarylamines
with iodoarenes do not proceed through free radical intermediates.30
We propose that the Ullmann reaction catalyzed by phen-ligated
Cu(I) occurs by the pathway in Scheme 4. By this mechanism, phen-
ligated CuI (13) is converted to alkali-metal cuprate 2 or 3 in the
presence of excess amine and base. This cuprate then equilibrates
with the neutral, monomeric form of 1, which undergoes oxidative
addition of the iodoarene to form Cu(III) species 14. This Cu(III)
species then reductively eliminates the amine product and regener-
ates 13. The autocatalysis by free CuI observed in the reactions of
complexes 1-3 with iodoarenes would not be expected to occur
as part of this cycle because the excess amine and base would
convert free CuI to the corresponding amidocuprate 2 or 3.
References
(1) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382.
(2) (a) Evano, G.; Blanchard, N.; Toumi, M. Chem. ReV. 2008, 108, 3054. (b)
Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(3) Goodbrand, H. B.; Hu, N.-X. J. Org. Chem. 1999, 64, 670.
(4) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2001, 123, 7727.
(5) (a) de Lange, B.; Lambers-Verstappen, M. H.; Schmieder-van de Vond-
ervoort, L.; Sereinig, N.; de Rijk, R.; de Vries, A. H. M.; de Vries, J. G.
Synlett 2006, 3105. (b) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006,
128, 8742.
(6) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793. (a) Kwong, F. Y.;
Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581.
(7) Paine, A. J. J. Am. Chem. Soc. 1987, 109, 1496.
(8) (a) Manifar, T.; Rohani, S.; Bender, T. P.; Goodbrand, H. B.; Gaynor, R.;
Saban, M. Ind. Eng. Chem. Res. 2005, 44, 789. (b) Bethell, D. J.; Jenkins,
I. L.; Quan, P. M. J. Chem. Soc., Perkin Trans. 2 1985, 1789.
(9) (a) Gambarotta, S.; Bracci, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C.
J. Chem. Soc., Dalton Trans. 1987, 1883. (b) Tsuda, T.; Watanabe, K.;
Miyata, K.; Yamamoto, H.; Saegusa, T. Inorg. Chem. 1981, 20, 2728. (c)
Hope, H.; Power, P. P. Inorg. Chem. 1984, 23, 936.
(10) (a) Tye, J. W.; Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F.
J. Am. Chem. Soc. 2008, 130, 9971. (b) Tye, J. W.; Weng, Z.; Giri, R.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2010, 49, 2185.
(11) (a) Strieter, E. R.; Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc. 2008,
131, 78. (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4120.
(12) Blue, E. D.; Davis, A.; Conner, D.; Gunnoe, T. B.; Boyle, P. D.; White,
P. S. J. Am. Chem. Soc. 2003, 125, 9435.
(13) Krause, N.; Gerold, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 186.
(14) Tsuda, T.; Miwa, M.; Saegusa, T. J. Org. Chem. 1979, 44, 3734.
(15) (a) Xifra, R.; Ribas, X.; Llobet, A.; Poater, A.; Duran, M.; Sola, M.; Stack,
T. D. P.; Benet-Buchholz, J.; Donnadieu, B.; Mahia, J.; Parella, T.
Chem.sEur. J. 2005, 11, 5146. (b) Ribas, X.; Jackson, D. A.; Donnadieu,
B.; Mah´ıa, J.; Parella, T.; Xifra, R.; Hedman, B.; Hodgson, K. O.; Llobet,
A.; Stack, T. D. P. Angew. Chem., Int. Ed. 2002, 41, 2991.
(16) (a) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196. (b)
King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl,
S. S. J. Am. Chem. Soc. 2010, 132, 12068.
Scheme 4. Proposed Catalytic Cycle without Autocatalysis
(17) A referee asked whether [CuNAr2]n could be directly observed in this
system. The 19F NMR spectrum of the reaction of a p-fluoro analogue of
complex 1 with CuI in DMF-d7 at -50 °C contained a new signal, but the
identity of the new species could not be determined unambigously.
(18) This complex likely contains a DMSO ligand. Reactions in tBuS(O)Me
occurred in lower yield than those in DMSO, suggesting that coordination
of DMSO controls the reactivity of the unsaturated copper amide.
(19) Tetrameric CuNR2 complexes in which R ) alkyl are known (see ref 9),
and we found that they do not react with iodoarenes. The CuNPh2 species
generated in situ would have weaker bridging ligands and would be
generated initially as a lower-coordinate species.
In summary, we have prepared and characterized a series of
amidocuprates, some having phen-ligated Cu(I) countercations, some
with phen-ligated alkali-metal cations, and some with alkali-metal
cations lacking bound phen. Free CuI accelerates the reactions of each
of these complexes. Double salt 1 was more reactive with iodoarenes
than were the alkali-metal cuprates 2-5. The relative reactivities in
the presence of added CuI were 1 . 3 > 2. These rates relate to
reactions of amines with aryl halides, base, and stoichiometric copper
during which CuI would be generated. In the absence of added CuI,
the relative rates for the reactions of the cuprates with iodotoluene
were complicated by autocatalysis but followed the rough trend 1 > 3
> 1 + phen > 2 > 4 ≈ 5. The low reactivity of cuprates 4 and 5,
which lack phen, implies that the reactions of 2 and 3 occur through
a phen-ligated Cu(I) species, such as [Cu(phen)(NPh2)]. The inherent
reactivity of [Cu(phen)(NPh2)] with aryl iodides was assessed by
conducting the reactions in the presence of added phen to sequester
CuI, and these reactions occurred in high yields at 80 °C. The reaction
of 1 with a radical probe implies that the reactions occur without Ph ·
intermediates, most likely through Cu(III) intermediates from oxidative
addition of the iodoarene. DFT calculations further support a mech-
anism proceeding through Cu(III) intermediates, as the formation of
such Cu(III) species is predicted to occur with a low energy barrier.
(20) Annunziata, A.; Galli, C.; Marinelli, M.; Pau, T. Eur. J. Org. Chem. 2001,
1323.
(21) (a) Melzer, M.; Mossin, S.; Dai, X.; Bartell, A.; Kapoor, P.; Meyer, K.;
Warren, T. Angew. Chem., Int. Ed. 2010, 49, 904. (b) Mankad, N. P.;
Antholine, W. E.; Szilagyi, R. K.; Peters, J. C. J. Am. Chem. Soc. 2009,
131, 3878.
(22) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc.
2010, 132, 6205.
(23) Newcomb, M.; Le Tadic, M.-H.; Putt, D. A.; Hollenberg, P. F. J. Am. Chem.
Soc. 1995, 117, 3312.
(24) Previous DFT calculations have shown that the barriers for oxidative
addition of ArI to complexes [Cu(Nphth)2]- and [Cu(NHAc)2]- are higher
than those for oxidative addition of ArI to three-coordinate L2Cu(Nphth)
and L2Cu(NHAc). See refs 10a and 25.
(25) Zhang, S.-L.; Liu, L.; Fu, Y.; Guo, Q.-X. Organometallics 2007, 26, 4546.
(26) DFT calculations suggested that both Cu(I) and Cu(III) species, [Cu(I)-
(NPh2)] and [Cu(III)(NPh2)(Ph)(I)], bind a single DMSO though oxygen.
(27) (a) Aalten, H. L.; Vankoten, G.; Grove, D. M.; Kuilman, T.; Piekstra, O. G.;
Hulshof, L. A.; Sheldon, R. A. Tetrahedron 1989, 45, 5565. (b) Couture,
C.; Paine, A. J. Can. J. Chem. 1985, 63, 111. (c) Arai, S.; Hida, M.;
Yamagishi, T. Bull. Chem. Soc. Jpn. 1978, 51, 277.
(28) (a) Weingarten, H. J. Org. Chem. 1964, 29, 3624. (b) Lindley, J.
Tetrahedron 1984, 40, 1433.
(29) Cohen, T.; Cristea, I. J. Am. Chem. Soc. 1976, 98, 748.
(30) Because LCuNHMe is more electron-rich than LCuNPh2, LCuNHMe could
be more prone to engage in single electron transfer processes.
JA105695S
9
J. AM. CHEM. SOC. VOL. 132, NO. 45, 2010 15863