practical preparation of fully substituted 1,3,5-triazines via
magnesiated triazines as well as synthetic routes to highly
functionalized 1,3,5-triazine dimers and trimers which are
expected to be valuable advanced materials. Thus, various
functionalized iodotriazine derivatives of type 1 underwent a
smooth I/Mg exchange reaction using BuMgCl (2a) or Oct-
MgBr (2b; 1.1 equiv, -78 °C, 10 min) affording the corre-
sponding 2-magnesiated 1,3,5-triazines of type 3 (Scheme 1).
equiv, -20 °C, 30 min) undergoes a cross-coupling with
ethyl 4-iodobenzoate (4a) in the presence of Pd(dba)2 (5
mol %) and tfp14 () P(2-furyl)3; 10 mol %), affording
the trisubstituted 1,3,5-triazine derivative 5a in 62% yield
(entry 1, Table 1). Additionally, a copper-catalyzed
allylation15 (CuCN·2LiCl, 20 mol %) of 3a with ethyl (2-
bromomethyl)acrylate16 (4b) produced the acrylate 5b in
73% yield (entry 2). In the same manner, a range of 1,3,5-
triazinylmagnesium reagents bearing electron-donating
functional groups such as a 2-thienyl group (3b), a
diphenylamino group (3c), or an aryl group bearing
various substituents (3d-j) were prepared by reaction with
BuMgCl (2a) or OctMgBr (2b; 1.1 equiv, -78 °C, 10
min) with 2-iodo-1,3,5-triazine derivatives (1a-j). The
resulting 1,3,5-triazinylmagnesium reagents 3b-j reacted
with various electrophiles 4b-e affording the fully
substituted 1,3,5-triazines 5c-m in 59-75% yield (entries
3-13). Thus, a Cu(I)-catalyzed allylation (CuCN·2LiCl,
20 mol %) of the magnesiated triazine 3b with ethyl
2-(bromomethyl)acrylate16 (4b) furnished the trisubstituted
acrylate 5c in 59% yield (entry 3). Similarly, the mag-
nesium reagent 3c afforded, after a Cu(I)-mediated ben-
zoylation with 4c (CuCN·2LiCl, 1.1 equiv), the triazinyl
ketone 5d in 71% yield (entry 4). Moreover, the substi-
tuted 2-triazinyl alcohol 5e was obtained after addition
of the organomagnesium reagent 3d to PhCHO (4d) in
61% yield (entry 5). Remarkably, also electron-poor
triazines 1e,f underwent a smooth I/Mg-exchange with
BuMgCl (2a; 1.1 equiv, -78 °C, 10 min) affording the
functionalized 1,3,5-triazinylmagnesium reagents 3e,f.
Subsequent Cu(I)-catalyzed allylation (CuCN·2LiCl, 20
mol %) with ethyl 2-(bromomethyl)acrylate16 (4b) or
addition to PhCHO (4d) afforded the trisubstituted 1,3,5-
triazines 5f and 5g in 54-71% yield (entries 6 and 7).
The 1,3,5-triazine-based Grignard reagents 3g-j bearing
electron-withdrawing functional groups such as ester,
cyano, and halo groups in the ortho- or para-position of
the phenyl substituent were prepared via a rapid I/Mg
exchange with OctMgBr (2b; 1.1 equiv, -78 °C, 10 min)
from the corresponding substituted 2-iodo-1,3,5-triazines
1g-j. In comparison to BuMgCl (2a), OctMgBr (2b)
avoids side products due to a nucleophilic substitution of
the triazine ring. Thus, the 1,3,5-triazinylmagnesium
Scheme 1. Preparation of Functionalized
1,3,5-Triazinylmagnesium Reagents of Type 3 and
Functionalization with Various Electrophiles
Subsequent reactions of the triazinylmagnesium reagents 3 with
various electrophiles (E+; 4a-e) led to substituted triazines of
type 5 in 59-75% yield (Scheme 1 and Table 1).
In comparison to well-established Hal/Mg exchange
reagents such as iPrMgCl,11 the Grignard reagents BuMgCl
(2a) and OctMgBr (2b) are less nucleophilic and more
selective, avoiding undesired substitution products. The
substrates for the exchange reactions, namely, the iodotriazine
derivatives of type 1, were prepared from 2,4-diiodo-6-
phenyl-1,3,5-triazine12 (6) using Negishi-type cross-cou-
plings13 with functionalized organozinc reagents in the
presence of Pd(PPh3)2Cl2 (1 mol %) in 47-80% yield
(Scheme 1).
The reaction of 6-iodo-4-octyl-2-phenyl-1,3,5-triazine
(1a) with BuMgCl (2a; 1.1 equiv, -78 °C, 10 min)
provided the corresponding triazinylmagnesium chloride
(3a), which after transmetalation with ZnBr2·LiCl (1.1
(13) (a) Wang, J.-X.; McCubbin, J.; Jin, M.; Laufer, R.; Mao, Y.; Crew,
A.; Mulvihill, M.; Snieckus, V. Org. Lett. 2008, 10, 2923. (b) de Meijere,
A.; von Zezschwitz, P.; Braese, S. Acc. Chem. Res. 2005, 38, 413–422. (c)
Albrecht, K.; Reiser, O.; Weber, M.; Knieriem, B.; de Meijere, A.
Tetrahedron 1994, 50, 383. (d) Negishi, E.; King, A.; Okukado, N. J. Org.
Chem. 1977, 42, 1821. (e) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (f)
Rist, Ø.; Begtrup, M. J. Chem. Soc., Perkin Trans. 2001, 1, 1566. (g) James,
C.; Coelho, A.; Gevaert, M.; Forgione, P.; Snieckus, V. J. Org. Chem. 2009,
74, 4094. (h) Zhao, Z.; Jaworski, A.; Piel, I.; Snieckus, V. Org. Lett. 2008,
10, 2617. (i) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc.
1980, 102, 3298. (j) Zeng, X.; Quian, M.; Hu, Q.; Negishi, E. Angew. Chem.
2004, 116, 2309; Angew. Chem., Int. Ed. 2004, 43, 2259. (k) Manolikakes,
G.; Schade, M.; Munoz Hernandez, C.; Mayr, H.; Knochel, P. Org. Lett.
2008, 10, 2765. (l) Dong, Z.; Manolikakes, G.; Li, J.; Knochel, P. Synthesis
2009, 681.
(9) (a) Ila, H.; Baron, O.; Wagner, A. J.; Knochel, P. Chem. Commun.
2006, 583. (b) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. K.;
Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003,
42, 4302. (c) Abarbri, M.; Knochel, P. Synlett 1999, 1577. (d) Dehmel, F.;
Abarbri, M.; Knochel, P. Synlett 2000, 345. (e) Krasovskiy, A.; Knochel,
P. Angew. Chem., Int. Ed. 2004, 43, 3333. (f) Cresty, F.; Knochel, P.
Synthesis 2010, 1097. (g) Melzig, L.; Rauhut, C.; Knochel, P. Synthesis
2009, 1041.
(10) Go´mez, I.; Alonso, E.; Ramo´n, D. J.; Yus, M. Tetrahedron 2000,
56, 4043.
(11) (a) Knochel, P. In Handbook of Functionalized Organometallics;
Wiley-VCH: Weinheim, 2005. (b) Lepreˆtre, A.; Turck, A.; Ple´, N.; Knochel,
P.; Que´guiner, G. Tetrahedron 2000, 56, 265. (c) Rauhut, C.; Cervino, C.;
Krasovskiy, A.; Knochel, P. Synlett 2009, 67.
(14) Farina, V.; Baker, S. R.; Benigni, D. A.; Sapino, C. Tetrahedron
Lett. 1988, 29, 5739.
(12) Obtained after treatment of 2,4-dichloro-6-phenyl-1,3,5-triazine with
HI. See: (a) Vla´d, G.; Horva´th, I. T. J. Org. Chem. 2002, 67, 6550. (b)
Supporting Information.
(15) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem.
1988, 53, 2390.
(16) Rambaud, M.; Villieras, J. Synthesis 1984, 406.
Org. Lett., Vol. 12, No. 23, 2010
5399