ChemComm
Communication
N. Chaichit, C. Mahidol, S. Ruchirawat and P. Kittakoop, J. Nat. Prod.,
2006, 69, 1351; (c) S.-H. Luo, L.-H. Weng, M.-J. Xie, X.-N. Li, J. Hua,
X. Zhao and S.-H. Li, Org. Lett., 2011, 13, 1864; (d) H. B. Park, Y.-J. Kim,
J. K. Lee, K. R. Lee and H. C. Kwon, Org. Lett., 2012, 14, 5002.
2 (a) S. E. Gibson and N. Mainolfi, Angew. Chem., Int. Ed., 2005, 44, 3022;
(b) M. R. Rivero, J. Adrio and J. C. Carretero, Synlett, 2005, 26; (c) S. Laschat,
A. Becheanu, T. Bell and A. Baro, Synlett, 2005, 2547; (d) H.-W. Lee and
F.-Y. Kwong, Eur. J. Org. Chem., 2010, 789; (e) R. Rios Torres and J. Vesely,
Other Transition Metal-Mediated Cyclizations Leading to Cyclopente-
nones, in Pauson–Khand Reaction: Scope, Variations and Applications,
ed. R. Rios Torres, John Wiley & Sons, Ltd, Chichester, UK, 2012.
3 (a) H. Pellisier, Tetrahedron, 2005, 61, 6479; (b) A. J. Frontier and
C. Collison, Tetrahedron, 2005, 61, 7577; (c) M. A. Tius, Eur. J. Org.
Chem., 2005, 2193; (d) M. J. Fuchter, Nazarov Cyclization, in Name
Reactions for Carbocyclic Ring Formations, ed. J. J. Li, John Wiley &
Sons, Inc., Hoboken, NJ, USA, 2010, p. 122; (e) T. Vaidya,
R. Eisenberg and A. J. Frontier, ChemCatChem, 2011, 3, 1531.
4 Selected examples of alternative cyclopentenone synthesis, (a) T. Varea,
´
A. Alcalde, C. L. de Dicastillo, C. R. de Arellano, F. P. Cossıo and
G. Asensio, J. Org. Chem., 2012, 77, 6327; (b) C. B. Jacobsen, K. L.
Jensen, J. Udmark and K. A. Jørgensen, Org. Lett., 2011, 13, 4790;
(c) A. D. Jenkins, A. Herath, M. Song and J. Montgomery, J. Am. Chem.
Soc., 2011, 133, 14460; (d) Y. Xu, M. McLaughlin, C.-Y. Chen,
R. A. Reamer, P. G. Dormer and I. W. Davies, J. Org. Chem., 2009, 74, 5100.
5 (a) J. Le Bras and J. Muzart, Chem. Rev., 2011, 111, 1170;
(b) J. W. Ruan and J. L. Xiao, Acc. Chem. Res., 2011, 44, 614.
6 (a) A. B. Dounay and L. E. Overman, Chem. Rev., 2003, 103, 2945;
(b) E. Negishi, C. Coperet, S. Ma, S.-Y. Liou and F. Liu, Chem. Rev.,
1996, 96, 365; (c) S. Ma, Chin. J. Org. Chem., 1991, 11, 561.
7 (a) T. Vlaar, E. Ruijter and R. V. A. Orru, Adv. Synth. Catal., 2011,
353, 809; (b) A. de Meijere, P. von Zezschwitz, H. Nuske and
B. Stulgies, J. Organomet. Chem., 2002, 653, 129.
Scheme 2 Proposed mechanism for the Pd-catalyzed cyclization of 1.
8 (a) S. R. Dubbaka and P. Vogel, J. Am. Chem. Soc., 2003, 125, 15292;
(b) S. R. Dubbaka and P. Vogel, Org. Lett., 2004, 6, 95;
(c) S. R. Dubbaka and P. Vogel, Angew. Chem., Int. Ed., 2005,
44, 7674; (d) S. R. Dubbaka and P. Vogel, Chem.–Eur. J., 2005,
11, 2633; (e) H. Prokopcov and C. O. Kappe, Angew. Chem.,
Int. Ed., 2009, 48, 2276.
9 Y. Dong, M. Wang, J. Liu, W. Ma and Q. Liu, Chem. Commun., 2011,
47, 2080.
10 L. Pan and Q. Liu, Synlett, 2011, 1073, and references therein.
11 W. Jin, W. Du, Q. Yang, H. Yu, J. Chen and Z. Yu, Org. Lett., 2011,
13, 4272.
12 (a) M. Wang, F. Han, H. Yuan and Q. Liu, Chem. Commun., 2010,
46, 2247; (b) S. Hara, S. Okamoto, M. Narahara, T. Fukuhara and
N. Yoneda, Synlett, 1999, 411; (c) C. V. Asokan, S. Bhattacharji, H. Ila
and H. Junjappa, Synthesis, 1988, 281.
13 Crystal data for 2a: C20H20O2S, colorless, M = 324.42, monoclinic,
space group P21/c, a = 19.0155(8) Å, b = 8.2100(3) Å, c = 11.6450(5) Å,
V = 1735.83(12) Å3, a = 90.001, b = 107.291(4)1, g = 90.001, Z = 4, T =
293(2) K, F(000) = 688, 6642 reflections collected, 3048 unique with
Rint = 0.0206, R1 = 0.0427, wR2 = 0.1047 (I > 2s(I)).
14 (a) A. M. Zawisza and J. Muzart, Tetrahedron Lett., 2007, 48, 6738;
(b) H. S. Kim, S. Gowrisankar, S. H. Kim and J. N. Kim, Tetrahedron
Lett., 2008, 49, 3858.
15 Y. Sumida, H. Yorimitsu and K. Oshima, J. Org. Chem., 2009,
74, 7986.
Scheme 3 Reductive Heck cyclization of 1ac–ae.
To test the stereoselectivity of the reaction, we next investigated
the Pd-catalyzed cyclizations of ketene dithioacetals 1ac–ae with
a0-phenyl groups. Accordingly, 2-cyclopentenones 2ac–ae were
obtained in good yields by using 10 mol% of Pd(PPh3)2Cl2 as
the catalyst and 3 equivalents of nBuMe2SiH as the hydride
donor (Scheme 3). Each cyclopentenone 2 was isolated as a
regio- and diastereoisomer with a trans relationship between
the R2 and a0-phenyl on the alkenoyl moiety. Stereochemical
assignments were made based on the coupling constant
between the a0- and the b0-proton of 2 (2.0 Hz) and the
assumption of the syn-carbopalladation process. No cis-isomers
1
were observed in the H NMR spectra of the crude products.
In conclusion, we have developed a hydrogenolysis-terminated
Heck cyclization of divinyl ketone derivatives based on C–S activation
for the first time. The intramolecular carbopalladation of a-alkenoyl
ketene dithioacetals, a kind of readily available b-alkylthio dienones,
occurs smoothly under the catalysis of Pd(PPh3)2Cl2 and is sub-
sequently trapped by a hydrogen in the presence of silane. The
reaction provides an efficient entry to 2-cyclopentenones in high
yields with excellent regio- and diastereoselectivities via a mecha-
nistically unique catalytic process which complements the existing
methods. Further investigations focused on its asymmetric version.
We acknowledge NNSFC-21172031/20972029 and the State
Key Laboratory of Fine Chemicals (KF1003) for funding support
of this research.
16
17
Notes and references
1 (a) D. S. Straus and C. K. Glass, Med. Res. Rev., 2001, 21, 185;
(b) P. Chomcheon, N. Sriubolmas, S. Wiyakrutta, N. Ngamrojanavanich, 18 M.-K. Chung and M. Schlaf, J. Am. Chem. Soc., 2004, 126, 7386.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 2201--2203 2203