pubs.acs.org/joc
Indeed, such methods are among the most studied and widely
Enantioselective Rh-Catalyzed Hydrogenation of
3-Aryl-4-phosphonobutenoates with a P-Stereogenic
BoPhoz-Type Ligand
applied for the enantioselective preparation of a variety of R- or
β-substituted phosphonic acid derivatives (i.e., R-hydroxy-
phosphonates,3 R-aminophosphonates,4 R-alkylphosphonates,5
and 3-phosphonopropanoic acid derivatives6). To the best of
our knowledge, however, enantioselective synthesis of 4-phos-
phonobutyric acid derivatives via the catalytic enantioselective
hydrogenation with chiral metal complexes remains an un-
explored area. These kinds of chiral compounds are very useful
precursors to other optically active phosphonic acid derivatives
such as 3-aminopropane-1-phosphonic acids, which are poten-
tial GABAB antagonists. Herein, we describe the first highly
enantioselective synthesis of a series of chiral 3-aryl-4-phos-
phonobutyric acid esters via a rhodium-catalyzed asym-
metric hydrogenation with a P-stereogenic Bophoz-type
phosphine-aminophosphine ligand.
Zheng-Chao Duan,†,‡ Xiang-Ping Hu,*,† Cheng Zhang,†,‡
and Zhuo Zheng*,†
†Dalian Institute of Chemical Physics, Chinese Academy of
Sciences, Dalian 116023, China, and ‡Graduate School of
Chinese Academy of Sciences, Beijing 100039, China
xiangping@dicp.ac.cn; zhengz@dicp.ac.cn
Received September 18, 2010
The basic strategy for the synthesis of chiral 3-substituted
4-phosphonobutyric acid esters involved asymmetric hydro-
genation of the corresponding 4-phosphonobutenoates. The
latter can be easily prepared from ketones through a three-step
transformation as outlined in Scheme 1. Initially, the unsat-
urated esters were obtained by the Horner-Wittig reaction, in
which (E)-isomers were formed predominantly.7 Bromination
(3) (a) Burk, M. J.; Stammers, T. A.; Straub, J. A. Org. Lett. 1999, 1, 387–
390. (b) Gridnev, I. D.; Higashi, N.; Imamoto, T. J. Am. Chem. Soc. 2001,
123, 4631–4632. (c) Gridnev, I. D.; Yasutake, M.; Imamoto, T.; Beletskaya,
I. P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5385–5390. (d) Liu, H.; Zhou,
Y.-G.; Yu, Z.-K.; Xiao, W.-J.; Liu, S.-H.; He, H.-W. Tetrahedron 2006, 62,
A series of chiral 3-aryl-4-phosphonobutyric acid esters
were synthesized in high enantioselectivities (93-98% ee)
via the Rh-catalyzed asymmetric hydrogenation of the
corresponding 3-aryl-4-phosphonobutenoates using a
P-stereogenic BoPhoz-type phosphine-aminophosphine
ligand. The methodology has been successfully applied to
the asymmetric synthesis of a potential GABAB antagonist,
(R)-phaclofen, in high enantioselectivity.
ꢀ
ꢀ
11207–11217. (e) Rubio, M.; Suarez, A.; Alvarez, E.; Pizzano, A. Chem.
ꢀ
ꢀ
Commun. 2005, 628–630. (f) Rubio, M.; Vargas, S.; Suarez, A.; Alvarez, E.;
Pizzano, A. Chem.;Eur. J. 2007, 13, 1821–1833. (g) Wang, D.-Y.; Hu,
X.-P.; Huang, J.-D.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Xu, X.-F.; Zheng, Z.
Angew. Chem., Int. Ed. 2007, 46, 7810–7813. (l) Wang, D.-Y.; Huang, J.-D.;
Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008,
73, 2011–2014. (m) Qiu, M.; Hu, X.-P.; Huang, J.-D.; Wang, D.-Y.; Deng, J.;
Yu, S.-B.; Duan, Z.-C.; Zheng, Z. Adv. Synth. Catal. 2008, 350, 2683–2689.
(n) Yu, S.-B.; Huang, J.-D.; Wang, D.-Y.; Hu, X.-P.; Deng, J.; Duan, Z.-C.;
Zheng, Z. Tetrahedron: Asymmetry 2008, 19, 1862–1866. (i) Wassenaar, J.;
Reek, J. N. H. J. Org. Chem. 2009, 74, 8403–8406. (h) Wassenaar, J.; Kuil,
M.; Lutz, M.; Spek, A. L.; Reek, J. N. H. Chem.;Eur. J. 2010, 16, 6509–
ꢀ
ꢀ
6517. (j) Fernandez-Perez, H.; Donald, S. M. A.; Munslow, I. J.; Benet-
Buchholz, J.; Maseras, F.; Vidal-Ferran, A. Chem.;Eur. J. 2010, 16, 6495–
6508. (k) Zupancic, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 1296–
1299.
Optically active phosphonates, as isosteres of carboxy-
lates, are important substrates in the study of biochemical
processes and reveal diverse and interesting biological and
biochemical properties in their role as enzyme inhibitors, agro-
chemicals, or pharmaceuticals.1 The enantioselective access
to these compounds, in particular by a catalytic method, has
therefore drawn a great deal of attention in the past few
decades.2 Given its inherent efficiency and atom economy,
the catalytic asymmetric hydrogenation of prochiral phos-
phonate derivatives is certainly one of the simplest and the
most efficient approaches to prepare chiral phosphonates.
€
(4) (a) Schollkopf, U.; Hoppe, I.; Thiele, A. Liebigs Ann. Chem. 1985,
555–559. (b) Kitamura, M.; Tokunaga, M.; Pham, T.; Lubell, W. D.; Noyori,
R. Tetrahedron Lett. 1995, 36, 5769–5772. (c) Schmidt, U.; Oehme, G.;
Krause, H. Synth. Commun. 1996, 26, 777–781. (d) Holz, J.; Quirmbach, M.;
€
€
Schmidt, U.; Heller, D.; Sturmer, R.; Borner, A. J. Org. Chem. 1998, 63,
8031–8034. (e) Grassert, I.; Schmidt, U.; Ziegler, S.; Fischer, C.; Oehme, G.
Tetrahedron: Asymmetry 1998, 9, 4193–4202. (f) Dwars, T.; Schmidt, U.;
€
Fischer, C.; Grassert, I.; Kempe, R.; Frohlich, R.; Drauz, K.; Oehme, G.
Angew. Chem., Int. Ed. 1998, 37, 2851–2853.
^
(5) (a) Henry, J.-C.; Lavergne, D.; Ratovelomanana-Vidal, V.; Genet, J.-P.;
Beletskaya, I. P.; Dolgina, T. M. Tetrahedron Lett. 1998, 39, 3473–3476.
(b) Goulioukina, N. S.; Dolgina, T. M.; Beletskaya, I. P.; Henry, J.-C.; Lavergne,
^
D.; Ratovelomanana-Vidal, V.; Genet, J.-P. Tetrahedron: Asymmetry 2001, 12,
319–327. (c) Goulioukina, N. S.; Dolgina, T. M.; Bondarenko, G. N.; Beletskaya,
I. P.;Ilyin, M. M.;Davankov, V. A.;Pfaltz, A.Tetrahedron: Asymmetry 2003, 14,
1397–1401. (d) Wang, D.-Y.; Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng,
Z. J. Org. Chem. 2009, 74, 4408–4410. (e) Cheruku, P.; Paptchikhine, A.; Church,
T. L.; Andersson, P. G. J. Am. Chem. Soc. 2009, 131, 8285–8289.
(6) (a) Badkar, P. A.; Rath, N. P.; Spilling, C. D. Org. Lett. 2007, 9, 3619–
3622. (b) Wang, D.-Y.; Hu, X.-P.; Hou, C.-J.; Deng, J.; Yu, S.-B.; Duan, Z.-C.;
Huang, J.-D.; Zheng, Z. Org. Lett. 2009, 11, 3226–3229.
(7) (a) Allan, R. D.; Bates, M. C.; Drew, C. A.; Duke, R. K.; Hambley,
T. W.; Johnston, G. A. R.; Mewett, K. N.; Spence, I. Tetrahedron 1990, 46,
2511–2524. (b) Varala, R.; Adapa, S. R. Synth. Commun. 2006, 36, 3743–
3747.
(1) (a) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Tetrahedron Lett.
1990, 31, 5587–5590. (b) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E.; Free,
C. A.; Rogers, W. L.; Smith, S. A.; DeForrest, J. M.; Oehl, R. S.; Petrillo,
E. W., Jr. J. Med. Chem. 1995, 38, 4557–4569. (c) Wang, C.-L. J.; Taylor,
T. L.; Mical, A. J.; Spitz, S.; Reilly, T. M. Tetrahedron Lett. 1992, 33, 7667–
7670. (d) Dellaria, J. F., Jr.; Maki, R. G. Tetrahedron Lett. 1986, 27, 2337–
2340. (e) Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D.
Tetrahedron Lett. 1992, 33, 6625–6628.
(2) Modern Phosphonate Chemistry; Savignac, P., Iorga, B., Eds.; CRC
Press: Boca Raton, 2003.
DOI: 10.1021/jo101849b
r
Published on Web 11/09/2010
J. Org. Chem. 2010, 75, 8319–8321 8319
2010 American Chemical Society