COMMUNICATIONS
Organocatalyzed Reduction of Tertiary Phosphine Oxides
[3] R. Appel, Angew. Chem. 1975, 87, 863–874; Angew.
Chem. Int. Ed. Engl. 1975, 14, 801–811.
[4] O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967,
40, 2380–2382.
[5] a) S. P. Marsden, Nat. Chem. 2009, 1, 685–687; b) I. J.
Fairlamb, ChemSusChem 2009, 2, 1021–1024; c) H. A.
van Kalkeren, F. L. van Delft, F. P. J. T. Rutjes, Chem-
SusChem 2013, 6, 1615–1624.
Appel reactions. Moreover, we have demonstrated
the direct access to the respective borane adducts in
a one-pot, two-step reaction sequence by simply
adding BH3·THF subsequent to the reduction. These
stable adducts were isolated in excellent yields up to
99%.
[6] D. Herault, D. H. Nguyen, D. Nuel, G. Buono, Chem.
Experimental Section
Soc. Rev. 2015, 44, 2508–2528.
[7] P. G. Andersson, I. J. Munslow, (Eds.), Modern Reduc-
tion Methods, Wiley-VCH, New York, 2008.
[8] T. Coumbe, N. J. Lawrence, F. Muhammad, Tetrahedron
General Procedure for the Reduction of Phosphine
Oxides 1 and Subsequent Conversion to the Corre-
sponding Phosphine·Boranes 4
Lett. 1994, 35, 625–628.
[9] Y. Li, L.-Q. Lu, S. Das, S. Pisiewicz, K. Junge, M.
Beller, J. Am. Chem. Soc. 2012, 134, 18325–18329.
[10] Y. Li, S. Das, S. Zhou, K. Junge, M. Beller, J. Am.
Chem. Soc. 2012, 134, 9727–9732.
[11] a) C. Petit, E. Poli, A. Favre-RØguillon, L. Khrouz, S.
Denis-Quanquin, L. Bonneviot, G. Mignani, M. Lem-
aire, ACS Catal. 2013, 3, 1431–1438; b) L. Pehlivan, E.
MØtay, D. Delbrayelle, G. Mignani, M. Lemaire, Tetra-
hedron 2012, 68, 3151–3155; c) C. Petit, A. Favre-Reg-
uillon, B. L. Albela, L. Bonneviot, G. Mignani, M.
Lemaire, Organometallics 2009, 28, 6379–6382.
In
a vial flushed with argon the phosphine oxide
1 (0.36 mmol) was added to a solution of CF3SO3H (1–
5 mol%) in toluene (1.2 mL). The reaction mixture was
stirred for 5 min at 238C. Subsequently, HexSiH3 was added,
the vial was flushed with argon, sealed and the reaction mix-
ture was stirred for 24 h at 708C to afford 2. The vial was
cooled to 238C, BH3·THF (2.0 equiv., 1M in THF) was
added and the reaction mixture was stirring for further 2 h
under argon at 238C. The crude product was purified by
column chromatography on silica gel (SiO2) with petroleum
ether (PE, 40–608C)/diethyl ether (Et2O) as eluents. After
removal of all volatiles under vacuum the desired product 4
was obtained.
[12] S. Rommel, C. Belger, J.-M. Begouin, B. Plietker,
ChemCatChem 2015, 7, 1292–1301.
[13] a) T. Werner, M. Hoffmann, S. Deshmukh, Eur. J. Org.
Chem. 2014, 6873–6876; b) T. Werner, M. Hoffmann, S.
Deshmukh, Eur. J. Org. Chem. 2014, 6630–6633; c) M.-
L. Schirmer, S. Adomeit, T. Werner, Org. Lett. 2015,
17, 3078–3081; d) T. Werner, M. Hoffmann, S. Desh-
mukh, Eur. J. Org. Chem. 2015, 3286–3295; e) E. E.
Coyle, B. J. Doonan, A. J. Holohan, K. A. Walsh, F.
Lavigne, E. H. Krenske, C. J. OꢁBrien, Angew. Chem.
2014, 126, 13121–13125; Angew. Chem. Int. Ed. 2014,
53, 12907–12911; f) W. Zhao, P. K. Yan, A. T. Radose-
vich, J. Am. Chem. Soc. 2015, 137, 616–619; g) K.
Fourmy, A. Voituriez, Org. Lett. 2015, 17, 1537–1540.
[14] C. J. OꢁBrien, F. Lavigne, E. E. Coyle, A. J. Holohan,
B. J. Doonan, Chem. Eur. J. 2013, 19, 5854–5858.
[15] a) A. Staubitz, A. P. M. Robertson, M. E. Sloan, I.
Manners, Chem. Rev. 2010, 110, 4023–4078; b) K. M.
Pietrusiewicz, M. Stankevic, Curr. Org. Chem. 2005, 9,
1883–1897; c) C. Darcel, E. B. Kaloun, R. Merdes, D.
Moulin, N. Riegel, S. Thorimbert, J. P. Genet, S. Juge, J.
Organomet. Chem. 2001, 624, 333–343.
Synthesis of Triphenylphosphine·Borane (4a)[18]
According to the general procedure, CF3SO3H (2.7 mg,
0.018 mmol), triphenylphosphine oxide (1a, 100 mg,
0.359 mmol) and HexSiH3 (128 mg, 1.10 mmol) in toluene
(1.2 mL) were converted. After work-up 4a was obtained as
colorless crystals; yield: 85.5 mg (0.310 mmol, 86%). Rf
1
(SiO2, CH:EtOAc=2:1); 0.68; H NMR (300 MHz, CDCl3,
228C): d=0.61–1.85 (m, 3H), 7.39–7.67 (m, 15H);
13C{1H} NMR (75 MHz, CDCl3, 238C): d=128.91 (d, JC,P
=
3
1
10.2 Hz, 32CH), 129.30 (d, JC,P =58.0 Hz, 3C), 131.39 (d,
4JC,P =2.4 Hz, 3CH), 133.33 (d, 2JC,P =9.7 Hz, 32CH);
31P NMR (121 MHz, CDCl3, 228C): d=21.11 (m); 11B NMR
(96 MHz, CDCl3, 228C): d=À37.82 (dq); MS (EI, 70 eV):
m/z (%)=263 (19) [M+ÀBH3 +H], 262 (100) [M+ÀBH3],
261 (19), 184 (16), 183 (81), 152 (12), 108 (25), 107 (16);
HR-MS (ESI): m/z=299.1136, calcd. for C18H18BPNa [M+ +
Na]: 299.1135.
[16] a) S. P. Marsden, A. E. McGonagle, B. McKeever-
Abbas, Org. Lett. 2008, 10, 2589–2591; b) C. J. OꢁBrien,
J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S. R.
Kunkel, K. C. Przeworski, G. A. Chass, Angew. Chem.
2009, 121, 6968–6971; Angew. Chem. Int. Ed. 2009, 48,
6836–6839.
[17] CCDC 1408783 (4l) and CCDC 1408784 (4n) contain
the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The
References
[1] a) A. Bçrner, (Ed.), Phosphorus Ligands in Asymmet-
ric Catalysis-Synthesis and Applications, Wiley-VCH,
Weinheim, 2008; b) L. D. Quin, (Ed.), A Guide to Or-
ganophosphorus Chemistry, John Wiley & Sons, New
York, 2000; c) P. C. J. Kamer, P. W. N. M. van Leeuwen
(Eds.), Phosphorus(III) Ligands in Homogeneous Cat-
alysis: Design and Synthesis, John Wiley & Sons, Chi-
chester, 2012.
Cambridge
Crystallographic Data
Centre via
[2] a) G. Wittig, G. Geissler, Justus Liebigs Ann. Chem.
1953, 580, 44–57; b) G. Wittig, U. Schçllkopf, Chem.
Ber. 1954, 87, 1318–1330.
[18] K. V. Rajendran, D. G. Gilheany, Chem. Commun.
2012, 48, 817–819.
Adv. Synth. Catal. 2016, 358, 26 – 29
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
29